Wasserstein statistics in one-dimensional location-scale models

Shun-ichi Amari, <u>Takeru Matsuda</u>

RIKEN Center for Brain Science

GSI 2021

Abstract

- Many estimators can be interpreted as projection w.r.t. some divergence.
 - e.g. maximum likelihood estimator (MLE) = projection w.r.t.
 Kullback-Leibler divergence

 Here, we focus on projection w.r.t. Wasserstein distance (W-estimator) and study its property for one-dimensional location-scale models.

4 □ ▷ ← 를 ▷ ← 볼 ▷ 를 보고 있다.
GSI 2021

Problem setting

$$X_1,\ldots,X_n \sim p(x \mid \theta)$$

- task: estimate θ by $\hat{\theta} = \hat{\theta}(x_1, \dots, x_n)$
- e.g. maximum likelihood estimate (MLE)

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(x_i \mid \theta)$$

MLE = KL projection

Kullback-Leibler divergence

$$D_{\text{KL}}(p_1, p_2) = \int p_1(x) \log \frac{p_1(x)}{p_2(x)} dx$$

empirical distribution

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \delta(x - x_i)$$

MLE = KL projection ("m-projection" in information geometry)

$$\hat{\theta}_{\text{MLE}} = \underset{o}{\text{arg min}} D_{\text{KL}}(\hat{p}, p_{\theta})$$

GSI 2021 4 / 15

Wasserstein distance

• L^2 Wasserstein distance (= optimal transportation cost) between p_1 and p_2 on \mathbb{R}^d

$$W_2(p_1, p_2) = \inf_{X_1, X_2} E(||X_1 - X_2||^2)^{1/2}$$

• infimum over all joint distributions of (X_1, X_2) with $X_1 \sim p_1$ and $X_2 \sim p_2$ marginally (coupling)

Wasserstein distance in one dimension

• When d = 1, W_2 is explicitly given by the cdf P_1 and P_2 :

$$W_2(p_1, p_2) = \left(\int_0^1 (P_1^{-1}(u) - P_2^{-1}(u))^2 du\right)^{1/2}$$

optimal coupling = monotone map

$$X_2 = P_2^{-1}(P_1(X_1))$$

W-estimator

W-estimator = projection w.r.t. Wasserstein distance

$$\hat{\theta}_{\mathrm{W}} = \underset{\theta}{\mathrm{arg\,min}} W_2(\hat{p}, p_{\theta})$$

Kullback-Leibler	MLE
Wasserstein	W-estimator

- Statistical property of W-estimator has been only partially investigated.
 - cf. Bassetti et al. (2006), Montavon et al. (2015), Bernton et al. (2019)
- Here, we focus on one-dimensional location-scale models.

One-dim. location-scale model

Definition

$$p(x \mid \theta) = \frac{1}{\sigma} f\left(\frac{x - \mu}{\sigma}\right), \quad \theta = (\mu, \sigma)$$

• f(z): pdf with mean 0 and variance 1 (e.g. N(0, 1)) $\rightarrow p(x \mid \theta)$: mean μ , variance σ^2

W-estimator for one-dim. location-scale model

Theorem

$$\hat{\mu}_{W} = \frac{1}{n} \sum_{i=1}^{n} x_{(i)}, \quad \hat{\sigma}_{W} = \sum_{i=1}^{n} k_{i} x_{(i)},$$

where $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ are order statistics of x_1, \ldots, x_n and

$$k_i = \int_{z_{i-1}}^{z_i} z f(z) dz, \quad z_i = F^{-1} \left(\frac{i}{n}\right).$$

- $\hat{\mu}_{\mathrm{W}}$: arithmetic mean
- $\hat{\sigma}_{W}$: linear combination of order statistics (L-statistics)

4□▶4∰▶4분▶4분▶ 분 90<</p>

Proof

• Since the optimal coupling of $\hat{p}(x)$ and $p(x \mid \mu, \sigma)$ transports $x_{(i)}$ to $[\mu + \sigma z_{i-1}, \mu + \sigma z_i]$,

$$W_2^2(\hat{p}, p_{\mu,\sigma}) = \sum_{i=1}^n \int_{\mu+\sigma z_{i-1}}^{\mu+\sigma z_i} (x - x_{(i)})^2 p(x \mid \mu, \sigma) dx$$
$$= \left(\mu^2 - \frac{2\mu}{n} \sum_{i=1}^n x_{(i)}\right) + \left(\sigma^2 - 2\sigma \sum_{i=1}^n k_i x_{(i)}\right) + \frac{1}{n} \sum_{i=1}^n x_{(i)}^2.$$

It is convex and minimized at

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_{(i)}, \quad \sigma = \sum_{i=1}^{n} k_i x_{(i)}.$$

4 D F 4 D F 4 D F 4 D F 9 9 9

Asymptotic distribution of W-estimator

Theorem

W-estimator is \sqrt{n} -consistent and

$$\sqrt{n} \begin{pmatrix} \hat{\mu}_{\mathrm{W}} - \mu \\ \hat{\sigma}_{\mathrm{W}} - \sigma \end{pmatrix} \Rightarrow N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^2 & \frac{1}{2} m_3 \sigma^2 \\ \frac{1}{2} m_3 \sigma^2 & \frac{1}{4} (m_4 - 1) \sigma^2 \end{pmatrix} \end{pmatrix},$$

where

$$m_4 = \int_{-\infty}^{\infty} z^4 f(z) dz$$
, $m_3 = \int_{-\infty}^{\infty} z^3 f(z) dz$.

 proof: functional delta method (Donsker's theorem & L-statistics theory; van der Vaart, 1998)

4 D > 4 D > 4 E > 4 E > E 9 Q C

Gaussian case

Corollary

For the Gaussian model (f(z) = N(0, 1)), W-estimator is Fisher efficient (attains the Cramer–Rao bound):

$$\sqrt{n} \begin{pmatrix} \hat{\mu}_{W} - \mu \\ \hat{\sigma}_{W} - \sigma \end{pmatrix} \Rightarrow N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma^{2} & 0 \\ 0 & \frac{1}{2}\sigma^{2} \end{pmatrix}$$

- proof: $m_4 = 3$, $m_3 = 0$
- For general model, W-estimator is not Fisher efficient
 - MLE is Fisher efficient

- 4 ロ ト 4 昼 ト 4 差 ト 4 差 ト 2 を 9 Q (^)

Simulation result (Gaussian model)

(MSE of W-estimator) / (MSE of MLE) for Gaussian model

• mean square error (MSE): $E[(\hat{\mu} - \mu)^2 + (\hat{\sigma} - \sigma)^2]$

• The ratio converges to one as $n \to \infty$, which indicates that W-estimator is Fisher efficient

◆□▶◆□▶◆■▶◆■▶ ■ 900

Simulation result (uniform model)

$$f(z) = \begin{cases} \frac{1}{2\sqrt{3}} & (-\sqrt{3} \le z \le \sqrt{3}) \\ 0 & (\text{otherwise}) \end{cases}$$

$$0 \qquad \qquad -W\text{-estimator} \\ --- \text{MLE}$$

$$2 \qquad 3 \qquad 4 \qquad 5 \qquad 6$$

$$\log_{10} n$$

• W-estimator: $O(n^{-1/2})$, MLE: faster than $O(n^{-1/2})$

Summary

W-estimator: projection w.r.t. Wasserstein distance

- We derived the asymptotic distribution of W-estimator for one-dimensional location-scale models
 - Fisher efficient in Gaussian case
- future problem: advantage over MLE ?? other models ??

4□▶ 4団▶ 4団▶ 4団▶ 3 900