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Abstract

@ Many estimators can be interpreted as projection w.r.t. some
divergence.

» e.g. maximum likelihood estimator (MLE) = projection w.r.t.
Kullback—Leibler divergence
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@ Here, we focus on projection w.r.t. Wasserstein distance
(W-estimator) and study its property for one-dimensional
location-scale models.
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Problem setting

X1,°"3Xn~p(x|9)

o task: estimate 6 by 8 = O(x,, ..., x,)

@ e.g. maximum likelihood estimate (MLE)

OmLE = arg max Z log p(x; | 6)

o i=1
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MLE = KL projection
@ Kullback—Leibler divergence

Dxi(p1, p2) = f pi(x)log

@ empirical distribution

pi1(x)

d
PG

p=4 Do)

@ MLE = KL projection (“m-projection” in information geometry)

éMLE = arg min Dgy.(P, ps)
9
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Wasserstein distance

@ [? Wasserstein distance (= optimal transportation cost)
between p, and p, on R?

Wa(pi, p2) = }}]n}; E(1X; — X,|H'?

» infimum over all joint distributions of (X1, X») with X; ~ p; and
X, ~ py marginally (coupling)

P1 p2

—)
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Wasserstein distance in one dimension
@ Whend =1, W, is explicitly given by the cdf P, and P;:
1/2

1
Wao(p1, p2) = (\fo (P;'(u) — Py (w)*du

@ optimal coupling = monotone map

X, = P5'(Pi(X)))

N P(x)
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W-estimator

@ W-estimator = projection w.r.t. Wasserstein distance

bw = arg min Wa(p, py)
9

Kullback—Leibler MLE
Wasserstein W-estimator

@ Statistical property of W-estimator has been only partially
investigated.

» cf. Bassetti et al. (2006), Montavon et al. (2015), Bernton et al.
(2019)

@ Here, we focus on one-dimensional location-scale models.
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One-dim. location-scale model
Definition

p(x | 6) = éf(%) 0= (u,0)

@ f(z): pdf with mean 0 and variance 1 (e.g. N(0, 1))
— p(x | 6): mean pu, variance o
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W-estimator for one-dim. location-scale model

Theorem

1 n n
fw = p Z Xi@, Ow= Z kixg,

i=1 i=1

where x) < x¢p) < --- < x() are order statistics of x;,. .., x, and

ki:fZi if@dz, zu=F" (%)

-1

@ [w: arithmetic mean
@ O: linear combination of order statistics (L-statistics)
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Proof

@ Since the optimal coupling of p(x) and p(x | u, o) transports x;;
to [u+ozim, u+ ozl,

n U+OZ

W3(P, Puo) = Z f (x = x@)*p(x | p, o)dx

i=1 YHTOZi-1

n

_ (’uz _ 27,“ Z x(,-)] N [02 _ 2ggkix(i)) + % Z Xg-

i=1

@ It is convex and minimized at

n

1 n
B=- Z X@p, O = Z kix-
n i=1

i=1
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Asymptotic distribution of W-estimator

Theorem
W-estimator is y/n-consistent and

fw —u 0 o %m30'2
lan=e) >Nl s~

where

my = f ) 2 f)dz, ms = f 2 f(2)dz.

[ee) (o8]

)

@ proof: functional delta method (Donsker’s theorem &
L-statistics theory; van der Vaart, 1998)
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Gaussian case

Corollary
For the Gaussian model (f(z) = N(0, 1)), W-estimator is Fisher
efficient (attains the Cramer—Rao bound):

oo =¥ o 1)

@ proof: my =3, m3 =0

@ For general model, W-estimator is not Fisher efficient
» MLE is Fisher efficient
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Simulation result (Gaussian model)

@ (MSE of W-estimator) / (MSE of MLE) for Gaussian model
» mean square error (MSE): E[(&1 — u)* + (6 — 0)?]
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@ The ratio converges to one as n — oo, which indicates that
W-estimator is Fisher efficient

GSl 2021 13/15



Simulation result (uniform model)
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@ W-estimator: O(n~'/?), MLE: faster than O(n~'/?)
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Summary

@ W-estimator: projection w.r.t. Wasserstein distance
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@ We derived the asymptotic distribution of W-estimator for
one-dimensional location-scale models

» Fisher efficient in Gaussian case

@ future problem: advantage over MLE ?? other models ??
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