Singular value shrinkage prior: a matrix version of Stein's prior

Takeru Matsuda

The University of Tokyo

June 19, 2019
Symposium in memory of Charles Stein

Motivation

vector	James-Stein estimator (1961)	Stein's prior (1974)
matrix	Efron-Morris estimator (1972)	$?$

Stein's 1974 paper

- "Estimation of the mean of a multivariate normal distribution"
- 1. Introduction
- 2. Computation of the risk of an arbitrary estimate of the mean
- 3. The spherically symmetric case
- 4. The risk of an estimate of a matrix of means
- 5. Choice of an estimate in the $p \times p$ case
- 6. Directions in which this work ought to be extended

Abstract

Efron-Morris estimator (Efron and Morris, 1972)

$$
\hat{M}_{\mathrm{EM}}(X)=X\left(I_{q}-(p-q-1)\left(X^{\top} X\right)^{-1}\right)
$$

minimax estimator of a normal mean matrix natural extension of the James-Stein estimator

Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

$$
\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(p-q-1) / 2}
$$

superharmonic ($\Delta \pi_{\text {svs }} \leq 0$), natural generalization of the Stein prior works well for low-rank matrices \rightarrow reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019) estimate unobserved entries of a matrix by exploting low-rankness

Efron-Morris estimator (Efron and Morris, 1972)

Note: singular values of matrices

- Singular value decomposition of $p \times q$ matrix $M(p \geq q)$

$$
M=U \Lambda V^{\top}
$$

$$
\begin{gathered}
U: p \times q, \quad V: q \times q, \quad U^{\top} U=V^{\top} V=I_{q} \\
\Lambda=\operatorname{diag}\left(\sigma_{1}(M), \ldots, \sigma_{q}(M)\right)
\end{gathered}
$$

- $\sigma_{1}(M) \geq \cdots \geq \sigma_{q}(M) \geq 0$: singular values of M
- $\operatorname{rank}(M)=\#\left\{i \mid \sigma_{i}(M)>0\right\}$

Estimation of normal mean matrix

$$
X_{i j} \sim \mathrm{~N}\left(M_{i j}, 1\right) \quad(i=1, \cdots, p ; j=1, \cdots, q)
$$

- estimate M based on X under Frobenius loss $\|\hat{M}-M\|_{F}^{2}$
- Efron-Morris estimator (= James-Stein estimator when $q=1$)

$$
\hat{M}_{\mathrm{EM}}(X)=X\left(I_{q}-(p-q-1)\left(X^{\top} X\right)^{-1}\right)
$$

Theorem (Efron and Morris, 1972)

When $p \geq q+2, \hat{M}_{\mathrm{EM}}$ is minimax and dominates $\hat{M}_{\mathrm{MLE}}(X)=X$.

- Stein (1974) noticed that it shrinks the singular values of the observation to zero.

$$
\sigma_{i}\left(\hat{M}_{\mathrm{EM}}\right)=\left(1-\frac{p-q-1}{\sigma_{i}(X)^{2}}\right) \sigma_{i}(X)
$$

Numerical results

- Risk functions for $p=5, q=3, \sigma_{1}=20, \sigma_{3}=0$ (rank 2)
- black: MLE, blue: JS, red: EM

- \hat{M}_{EM} works well when σ_{2} is small, even if σ_{1} is large.
- \hat{M}_{JS} works well when $\|M\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}$ is small.

Numerical results

- Risk functions for $p=5, q=3, \sigma_{2}=\sigma_{3}=0$ (rank 1)
- black: MLE, blue: JS, red: EM

- \hat{M}_{EM} has constant risk reduction as long as $\sigma_{2}=\sigma_{3}=0$, because it shrinks singular values for each.
- Therefore, it works well when M has low rank.

Remark: SURE for matrix mean

- orthogonally invariant estimator

$$
X=U \Sigma V^{\top}, \quad \hat{M}=U \Sigma\left(I_{q}-\Phi(\Sigma)\right) V^{\top}
$$

- Stein (1974) derived an unbiased estimate of risk (SURE):

$$
p q+\sum_{i=1}^{q}\left\{\sigma_{i}^{2} \phi_{i}^{2}-2(p-q+1) \phi_{i}-2 \sigma_{i} \frac{\partial \phi_{i}}{\partial \sigma_{i}}\right\}-4 \sum_{i<j} \frac{\sigma_{i}^{2} \phi_{i}-\sigma_{j}^{2} \phi_{j}}{\sigma_{i}^{2}-\sigma_{j}^{2}}
$$

- regularity conditions \rightarrow M. and Strawderman (2018)
- SURE is also improved by singular value shrinkage (M. and Strawderman, 2018)
- extension of Johnstone (1988)

Singular value shrinkage prior

 (Matsuda and Komaki, 2015)
Superharmonic prior for estimation

$$
X \sim \mathrm{~N}_{p}\left(\mu, I_{p}\right)
$$

- estimate μ based on X under the quadratic loss
- superharmonic prior

$$
\Delta \pi(\mu)=\sum_{i=1}^{p} \frac{\partial^{2}}{\partial \mu_{i}^{2}} \pi(\mu) \leq 0
$$

- the Stein prior $(p \geq 3)$ is superharmonic:

$$
\pi(\mu)=\|\mu\|^{2-p}
$$

- Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)

Bayes estimators with superharmonic priors dominate MLE.

Superharmonic prior for prediction

$$
X \sim \mathrm{~N}_{p}(\mu, \Sigma), \quad Y \sim \mathrm{~N}_{p}(\mu, \widetilde{\Sigma})
$$

- We predict Y from the observation $X(\Sigma, \widetilde{\Sigma}$: known $)$
- Bayesian predictive density with prior $\pi(\mu)$

$$
\hat{p}_{\pi}(y \mid x)=\int p(y \mid \mu) \pi(\mu \mid x) \mathrm{d} \mu
$$

- Kullback-Leibler loss

$$
D(p(y \mid \mu), \hat{p}(y \mid x))=\int p(y \mid \mu) \log \frac{p(y \mid \mu)}{\hat{p}(y \mid x)} \mathrm{d} y
$$

- Bayesian predictive density with the uniform prior is minimax

Superharmonic prior for prediction

$$
X \sim \mathrm{~N}_{p}(\mu, \Sigma), \quad Y \sim \mathrm{~N}_{p}(\mu, \widetilde{\Sigma})
$$

Theorem (Komaki, 2001)
When $\Sigma \propto \widetilde{\Sigma}$, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006)

When $\Sigma \propto \widetilde{\Sigma}$, superharmonic priors dominate the uniform prior.
Theorem (Kobayashi and Komaki, 2008; George and Xu, 2008)
For general Σ and $\widetilde{\Sigma}$, superharmonic priors dominate the uniform prior.

Motivation

vector	James-Stein estimator $\hat{\mathrm{J}}_{\mathrm{S}}=\left(1-\frac{p-2}{\\|x\\|^{2}}\right) x$	Stein's prior $\pi_{\mathrm{S}}(\mu)=\\|\mu\\|^{-(p-2)}$
matrix	Efron-Morris estimator	
$\hat{M}_{\mathrm{EM}}=X\left(I_{q}-(p-q-1)\left(X^{\top} X\right)^{-1}\right)$	$?$	

- note: JS and EM are not generalized Bayes.

Singular value shrinkage prior

$$
\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(p-q-1) / 2}=\prod_{i=1}^{q} \sigma_{i}(M)^{-(p-q-1)}
$$

- We assume $p \geq q+2$.
- $\pi_{\text {svs }}$ puts more weight on matrices with smaller singular values, so it shrinks singular values for each.
- When $q=1, \pi_{\text {SvS }}$ coincides with the Stein prior.

Theorem (M. and Komaki, 2015)

π_{SVS} is superharmonic: $\Delta \pi_{\mathrm{SVS}} \leq 0$.

- Therefore, the Bayes estimator and Bayesian predictive density with respect to π_{SVS} are minimax.

Comparison to other superharmonic priors

- Previously proposed superharmonic priors mainly shrink to simple subsets (e.g. point, linear subspace).
- In contrast, our priors shrink to the set of low rank matrices, which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
 $\Delta \pi_{\mathrm{svs}}(M)=0$ if M has full rank.

- Therefore, superharmonicity of $\pi_{\text {svs }}$ is strongly concentrated in the same way as the Laplacian of the Stein prior becomes a Dirac delta function.

An observation

- James-Stein estimator

$$
\hat{\mu}_{\mathrm{JS}}=\left(1-\frac{p-2}{\|x\|^{2}}\right) x
$$

- Stein's prior

$$
\pi_{\mathrm{S}}(\mu)=\|\mu\|^{-(p-2)}
$$

- Efron-Morris estimator

$$
\hat{\sigma}_{i}=\left(1-\frac{p-q-1}{\sigma_{i}^{2}}\right) \sigma_{i}
$$

- Singular value shrinkage prior

$$
\pi_{\mathrm{SVS}}(M)=\prod_{i=1}^{q} \sigma_{i}(M)^{-(p-q-1)}
$$

Numerical results

- Risk functions of Bayes estimators
- $p=5, q=3$
- dashed: uniform prior, solid: Stein's prior, dash-dot: our prior

- π_{SVS} works well when σ_{2} is small, even if σ_{1} is large.
- Stein's prior works well when $\|M\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}$ is small.

Numerical results

- Risk functions of Bayes estimators
- $p=5, q=3$
- dashed: uniform prior, solid: Stein's prior, dash-dot: our prior

- $\pi_{\text {Svs }}$ has constant risk reduction as long as $\sigma_{2}=\sigma_{3}=0$, because it shrinks singular values for each.
- Therefore, it works well when M has low rank.

Remark: integral representation

- When $p>2 q$, an integral representation of $\pi_{\text {Svs }}$ is obtained.
- $\mathrm{d} \Sigma$: Lebesgue measure on the space of positive semidefinite matrices

$$
\pi_{\mathrm{SVS}}(M) \propto \int \mathrm{N}_{p, q}\left(0, I_{p} \otimes \Sigma\right) \mathrm{d} \Sigma
$$

- cf. Stein's prior

$$
\pi_{\mathrm{S}}(\mu)=\|\mu\|^{2-p} \propto \int_{0}^{\infty} \mathrm{N}_{p}\left(0, t I_{p}\right) \mathrm{d} t
$$

Additional shrinkage

- Efron and Morris (1976) proposed an estimator that further dominates \hat{M}_{EM} by additional shrinkage to the origin

$$
\hat{M}_{\mathrm{MEM}}=X\left\{I_{q}-(p-q-1)\left(X^{\top} X\right)^{-1}-\frac{q^{2}+q-2}{\operatorname{tr}\left(X^{\top} X\right)} I_{q}\right\}
$$

- Motivated from this estimator, we propose another shrinkage prior

$$
\pi_{\mathrm{MSVS}}(M)=\pi_{\mathrm{SVS}}(M)\|M\|_{\mathrm{F}}^{-\left(q^{2}+q-2\right)}
$$

Theorem (M. and Komaki, 2017)

The prior $\pi_{\text {Msvs }}$ asymptotically dominates $\pi_{\text {svs }}$ in both estimation and prediction.

Numerical results

- $p=10, q=3, \sigma_{2}=\sigma_{3}=0($ rank 1$)$
- black: π_{I}, blue: π_{S}, green: π_{SVS}, red: π_{MSVS}

- Additional shrinkage improves risk when $\|M\|_{\mathrm{F}}$ is small.

Admissibility results

Theorem (M. and Strawderman)

The Bayes estimator with respect to $\pi_{\text {svs }}$ is inadmissible. The Bayes estimator with respect to π_{MSvs} is admissible.

- Proof: use Brown's condition

Addition of column-wise shrinkage

$$
\pi_{\mathrm{MSVS}}(M)=\pi_{\mathrm{SVS}}(M) \prod_{j=1}^{q}\left\|M_{\cdot j}\right\|^{-q+1}
$$

- $M_{. j}$: j-th column vector of M

Theorem (M. and Komaki, 2017)

The prior $\pi_{\text {MSvs }}$ asymptotically dominates $\pi_{\text {svs }}$ in both estimation and prediction.

- This prior can be used for sparse reduced rank regression.

$$
\begin{gathered}
Y=X B+E, \quad E \sim \mathrm{~N}_{n, q}\left(0, I_{n} \otimes \Sigma\right) \\
\rightarrow \hat{B}=\left(X^{\top} X\right)^{-1} X^{\top} Y \sim \mathrm{~N}_{p, q}\left(B,\left(X^{\top} X\right)^{-1} \otimes \Sigma\right)
\end{gathered}
$$

Stein's recommendation

- Efron-Morris estimator

$$
\hat{\sigma}_{i}=\left(1-\frac{p-q-1}{\sigma_{i}^{2}}\right) \sigma_{i}
$$

- Singular value shrinkage prior

$$
\pi_{\mathrm{SVS}}(M)=\prod_{i=1}^{q} \sigma_{i}(M)^{-(p-q-1)}
$$

- Stein (1974, Section 5) recommends stronger shrinkage

$$
\hat{\sigma}_{i}=\left(1-\frac{p+q-2 i-1}{\sigma_{i}^{2}}\right) \sigma_{i}
$$

and says it dominates the Efron-Morris estimator.

- Corresponding prior?

$$
\pi(M)=\prod_{i=1}^{q} \sigma_{i}(M)^{-(p+q-2 i-1)}
$$

Empirical Bayes matrix completion (Matsuda and Komaki, 2019)

Empirical Bayes viewpoint

- Efron-Morris estimator was derived as an empirical Bayes estimator.

$$
\begin{gathered}
M \sim \mathrm{~N}_{p, q}\left(0, I_{p} \otimes \Sigma\right) \quad \Leftrightarrow \quad M_{i .} \sim \mathrm{N}_{q}(0, \Sigma) \\
Y \mid M \sim \mathrm{~N}_{p, q}\left(M, I_{p} \otimes I_{q}\right) \quad \Leftrightarrow \quad Y_{i j} \sim \mathrm{~N}\left(M_{i j}, 1\right)
\end{gathered}
$$

- Bayes estimator (posterior mean)

$$
\hat{M}^{\pi}(Y)=Y\left(I_{q}-\left(I_{q}+\Sigma\right)^{-1}\right)
$$

- Since $Y^{\top} Y \sim W_{q}\left(I_{q}+\Sigma, p\right)$ marginally,

$$
\mathrm{E}\left[\left(Y^{\top} Y\right)^{-1}\right]=\frac{1}{p-q-1}\left(I_{q}+\Sigma\right)^{-1}
$$

\rightarrow Replace $\left(I_{q}+\Sigma\right)^{-1}$ in $\hat{M}^{\pi}(Y)$ by $(p-q-1)\left(Y^{\top} Y\right)^{-1}$
\rightarrow Efron-Morris estimator

Matrix completion

- Netflix problem
- matrix of movie ratings by users

user 1	movie 1	movie 2	movie 3	movie 4
	4	7	?	2
user 2	6	?	3	8
user 3	?	1	9	?
user 4	4	5	?	3

- We want to estimate unobserved entries for recommendation. \rightarrow matrix completion
- Many studies investigated its theory and algorithm.

Matrix completion

- Low-rankness of the underlying matrix is crucial in matrix completion.
- Existing algorithms employ low rank property.
- SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...
- e.g. SVT algorithm
- $\|A\|_{*}$: nuclear norm (sum of singular values)

$$
\begin{array}{ll}
\underset{\hat{M}}{\operatorname{minimize}} & \|\hat{M}\|_{*} \\
\text { subject to } & \left|Y_{i j}-\hat{M}_{i j}\right| \leq E_{i j}, \quad(i, j) \in \Omega
\end{array}
$$

\rightarrow sparse singular values (low rank)

EB algorithm

- We develop an empirical Bayes (EB) algorithm for matrix completion.
- EB is based on the following hierarchical model
- Same with the derivation of the Efron-Morris estimator
- C : scalar or diagonal matrix (unknown)

$$
\begin{gathered}
M \sim \mathrm{~N}_{p, q}\left(0, I_{p} \otimes \Sigma\right) \\
Y \mid M \sim \mathrm{~N}_{p, q}\left(M, I_{p} \otimes C\right)
\end{gathered}
$$

- Goal: estimate M from observed entries of Y
- If Y is fully observed, it reduces to the previous problem.
\rightarrow EM algorithm !!

EB algorithm

EB algorithm

- E step: estimate (Σ, C) from \hat{M} and Y
- M step: estimate M from Y and $(\hat{\Sigma}, \hat{C})$
- Iterate until convergence
- Both steps can be solved analytically.
- Sherman-Morrison-Woodbery formula
- We obtain two algorithms corresponding to C is scalar or diagonal.
- EB does not require heuristic parameter tuning other than tolerance.

Numerical results

- Results on simulated data
- 1000 rows, 100 columns, rank $=30,50 \%$ entries observed
- observation noise: homogeneous ($R=I_{q}$)

	error	time
EB (scalar)	0.26	4.33
EB (diagonal)	0.26	4.26
SVT	0.48	1.44
SOFT-IMPUTE	0.50	3.58
OPTSPACE	0.89	67.74
Manopt	0.89	0.17

- EB has the best accuracy.

Numerical results: rank

- Performance with respect to rank
- 1000 rows, 100 columns, 50% entries observed
- observation noise: unit variance

- EB has the best accuracy when $r \geq 20$.

Application to real data

- Mice Protein Expression dataset
- expression levels of 77 proteins measured in the cerebral cortex of 1080 mice
- from UCI Machine Learning Repository

	error	time
EB (scalar)	0.12	2.90
EB (diagonal)	0.11	3.35
SVT	0.84	0.17
SOFT-IMPUTE	0.29	2.14
OPTSPACE	0.33	12.39
Manopt	0.64	0.19

- EB attains the best accuracy.

Future work (tensor case)

- How about tensors?

$$
X=\left(X_{i j k}\right)
$$

- For tensors, even the definition of rank or singular values is not clear..
- Hopefully, some empirical Bayes method provides a natural shrinkage for tensors.

Summary

Efron-Morris estimator (Efron and Morris, 1972)

$$
\hat{M}_{\mathrm{EM}}(X)=X\left(I_{q}-(p-q-1)\left(X^{\top} X\right)^{-1}\right)
$$

minimax estimator of a normal mean matrix natural extension of the James-Stein estimator

Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

$$
\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(p-q-1) / 2}
$$

superharmonic ($\Delta \pi_{\text {svs }} \leq 0$), natural generalization of the Stein prior works well for low-rank matrices \rightarrow reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019) estimate unobserved entries of a matrix by exploting low-rankness

