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Motivation

vector James–Stein estimator (1961) Stein’s prior (1974)

matrix Efron–Morris estimator (1972) ?
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Stein’s 1974 paper

“Estimation of the mean of a multivariate normal distribution”

1. Introduction
2. Computation of the risk of an arbitrary estimate of the mean
3. The spherically symmetric case
4. The risk of an estimate of a matrix of means
5. Choice of an estimate in the p × p case
6. Directions in which this work ought to be extended
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Abstract
Efron–Morris estimator (Efron and Morris, 1972)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
minimax estimator of a normal mean matrix
natural extension of the James–Stein estimator

↓

Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

πSVS(M) = det(M>M)−(p−q−1)/2

superharmonic (∆πSVS ≤ 0), natural generalization of the Stein prior
works well for low-rank matrices→ reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness
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Efron–Morris estimator
(Efron and Morris, 1972)
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Note: singular values of matrices

Singular value decomposition of p × q matrix M (p ≥ q)

M = UΛV>

U : p × q, V : q × q, U>U = V>V = Iq

Λ = diag(σ1(M), . . . , σq(M))

σ1(M) ≥ · · · ≥ σq(M) ≥ 0 : singular values of M
rank(M) = #{i | σi(M) > 0}
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Estimation of normal mean matrix

Xi j ∼ N(Mi j, 1) (i = 1, · · · , p; j = 1, · · · , q)

estimate M based on X under Frobenius loss ‖M̂ − M‖2F
Efron–Morris estimator (= James–Stein estimator when q = 1)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
Theorem (Efron and Morris, 1972)
When p ≥ q + 2, M̂EM is minimax and dominates M̂MLE(X) = X.

Stein (1974) noticed that it shrinks the singular values of the
observation to zero.

σi(M̂EM) =

(
1 −

p − q − 1
σi(X)2

)
σi(X)
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Numerical results
Risk functions for p = 5, q = 3, σ1 = 20, σ3 = 0 (rank 2)
black: MLE, blue: JS, red: EM

M̂EM works well when σ2 is small, even if σ1 is large.
I M̂JS works well when ‖M‖2F = σ2

1 + σ2
2 + σ2

3 is small.
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Numerical results
Risk functions for p = 5, q = 3, σ2 = σ3 = 0 (rank 1)
black: MLE, blue: JS, red: EM

M̂EM has constant risk reduction as long as σ2 = σ3 = 0,
because it shrinks singular values for each.
Therefore, it works well when M has low rank.
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Remark: SURE for matrix mean
orthogonally invariant estimator

X = UΣV>, M̂ = UΣ(Iq − Φ(Σ))V>

Stein (1974) derived an unbiased estimate of risk (SURE):

pq +

q∑
i=1

{
σ2

i φ
2
i − 2(p − q + 1)φi − 2σi

∂φi

∂σi

}
− 4

∑
i< j

σ2
i φi − σ

2
jφ j

σ2
i − σ

2
j

I regularity conditions→ M. and Strawderman (2018)

SURE is also improved by singular value shrinkage (M. and
Strawderman, 2018)

I extension of Johnstone (1988)
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Singular value shrinkage prior

(Matsuda and Komaki, 2015)
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Superharmonic prior for estimation

X ∼ Np(µ, Ip)

estimate µ based on X under the quadratic loss
superharmonic prior

∆π(µ) =

p∑
i=1

∂2

∂µ2
i

π(µ) ≤ 0

the Stein prior (p ≥ 3) is superharmonic:

π(µ) = ‖µ‖2−p

Bayes estimator with the Stein prior shrinks to the origin.

Theorem (Stein, 1974)
Bayes estimators with superharmonic priors dominate MLE.
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Superharmonic prior for prediction

X ∼ Np(µ,Σ), Y ∼ Np(µ, Σ̃)

We predict Y from the observation X (Σ, Σ̃: known)
Bayesian predictive density with prior π(µ)

p̂π(y | x) =

∫
p(y | µ)π(µ | x)dµ

Kullback-Leibler loss

D(p(y | µ), p̂(y | x)) =

∫
p(y | µ) log

p(y | µ)
p̂(y | x)

dy

Bayesian predictive density with the uniform prior is minimax
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Superharmonic prior for prediction

X ∼ Np(µ,Σ), Y ∼ Np(µ, Σ̃)

Theorem (Komaki, 2001)
When Σ ∝ Σ̃, the Stein prior dominates the uniform prior.

Theorem (George, Liang and Xu, 2006)
When Σ ∝ Σ̃, superharmonic priors dominate the uniform prior.

Theorem (Kobayashi and Komaki, 2008; George and
Xu, 2008)
For general Σ and Σ̃, superharmonic priors dominate the uniform
prior.
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Motivation

vector
James–Stein estimator

µ̂JS =
(
1 − p−2

‖x‖2

)
x

Stein’s prior

πS(µ) = ‖µ‖−(p−2)

matrix
Efron–Morris estimator

M̂EM = X
(
Iq − (p − q − 1)(X>X)−1

) ?

note: JS and EM are not generalized Bayes.
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Singular value shrinkage prior

πSVS(M) = det(M>M)−(p−q−1)/2 =

q∏
i=1

σi(M)−(p−q−1)

We assume p ≥ q + 2.
πSVS puts more weight on matrices with smaller singular
values, so it shrinks singular values for each.
When q = 1, πSVS coincides with the Stein prior.

Theorem (M. and Komaki, 2015)
πSVS is superharmonic: ∆πSVS ≤ 0.

Therefore, the Bayes estimator and Bayesian predictive density
with respect to πSVS are minimax.
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Comparison to other superharmonic priors

Previously proposed superharmonic priors mainly shrink to
simple subsets (e.g. point, linear subspace).

In contrast, our priors shrink to the set of low rank matrices,
which is nonlinear and nonconvex.

Theorem (M. and Komaki, 2015)
∆πSVS(M) = 0 if M has full rank.

Therefore, superharmonicity of πSVS is strongly concentrated in
the same way as the Laplacian of the Stein prior becomes a
Dirac delta function.

June 19, 2019 Symposium in memory of Charles Stein 17 / 37



An observation
James-Stein estimator

µ̂JS =

(
1 −

p − 2
‖x‖2

)
x

Stein’s prior
πS(µ) = ‖µ‖−(p−2)

Efron–Morris estimator

σ̂i =

(
1 −

p − q − 1
σ2

i

)
σi

Singular value shrinkage prior

πSVS(M) =

q∏
i=1

σi(M)−(p−q−1)
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Numerical results
Risk functions of Bayes estimators

I p = 5, q = 3
I dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior

σ1 = 20, σ3 = 0
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πSVS works well when σ2 is small, even if σ1 is large.
I Stein’s prior works well when ‖M‖2F = σ2

1 + σ2
2 + σ2

3 is small.
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Numerical results
Risk functions of Bayes estimators

I p = 5, q = 3
I dashed: uniform prior, solid: Stein’s prior, dash-dot: our prior

σ2 = 0, σ3 = 0

σ1

F
ro

b
e

n
iu

s
 r

is
k

0 5 10 15 20

0
5

1
0

1
5

πSVS has constant risk reduction as long as σ2 = σ3 = 0,
because it shrinks singular values for each.
Therefore, it works well when M has low rank.
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Remark: integral representation

When p > 2q, an integral representation of πSVS is obtained.
I dΣ : Lebesgue measure on the space of positive semidefinite

matrices

πSVS(M) ∝
∫

Np,q(0, Ip ⊗ Σ)dΣ

cf. Stein’s prior

πS(µ) = ‖µ‖2−p ∝

∫ ∞

0
Np(0, tIp)dt
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Additional shrinkage

Efron and Morris (1976) proposed an estimator that further
dominates M̂EM by additional shrinkage to the origin

M̂MEM = X
{

Iq − (p − q − 1)(X>X)−1 −
q2 + q − 2
tr(X>X)

Iq

}
Motivated from this estimator, we propose another shrinkage

prior

πMSVS(M) = πSVS(M)‖M‖−(q2+q−2)
F

Theorem (M. and Komaki, 2017)
The prior πMSVS asymptotically dominates πSVS in both estimation
and prediction.
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Numerical results

p = 10, q = 3, σ2 = σ3 = 0 (rank 1)
black: πI, blue: πS, green: πSVS, red: πMSVS

Additional shrinkage improves risk when ‖M‖F is small.
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Admissibility results

Theorem (M. and Strawderman)
The Bayes estimator with respect to πSVS is inadmissible.
The Bayes estimator with respect to πMSVS is admissible.

Proof: use Brown’s condition
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Addition of column-wise shrinkage

πMSVS(M) = πSVS(M)
q∏

j=1

‖M· j‖−q+1

M· j: j-th column vector of M

Theorem (M. and Komaki, 2017)
The prior πMSVS asymptotically dominates πSVS in both estimation
and prediction.

This prior can be used for sparse reduced rank regression.

Y = XB + E, E ∼ Nn,q(0, In ⊗ Σ)

→ B̂ = (X>X)−1X>Y ∼ Np,q(B, (X>X)−1 ⊗ Σ)
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Stein’s recommendation
Efron–Morris estimator

σ̂i =

(
1 −

p − q − 1
σ2

i

)
σi

Singular value shrinkage prior

πSVS(M) =

q∏
i=1

σi(M)−(p−q−1)

Stein (1974, Section 5) recommends stronger shrinkage

σ̂i =

(
1 −

p + q − 2i − 1
σ2

i

)
σi

and says it dominates the Efron–Morris estimator.
Corresponding prior ?

π(M) =

q∏
i=1

σi(M)−(p+q−2i−1)
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Empirical Bayes matrix completion

(Matsuda and Komaki, 2019)
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Empirical Bayes viewpoint
Efron–Morris estimator was derived as an empirical Bayes
estimator.

M ∼ Np,q(0, Ip ⊗ Σ) ⇔ Mi· ∼ Nq(0,Σ)

Y | M ∼ Np,q(M, Ip ⊗ Iq) ⇔ Yi j ∼ N(Mi j, 1)

Bayes estimator (posterior mean)

M̂π(Y) = Y
(
Iq − (Iq + Σ)−1

)
Since Y>Y ∼ Wq(Iq + Σ, p) marginally,

E[(Y>Y)−1] =
1

p − q − 1
(Iq + Σ)−1

→ Replace (Iq + Σ)−1 in M̂π(Y) by (p − q − 1)(Y>Y)−1

→ Efron–Morris estimator
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Matrix completion

Netflix problem
I matrix of movie ratings by users

We want to estimate unobserved entries for recommendation.
→ matrix completion
Many studies investigated its theory and algorithm.
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Matrix completion

Low-rankness of the underlying matrix is crucial in matrix
completion.
Existing algorithms employ low rank property.

I SVT, SOFT-IMPUTE, OPTSPACE, Manopt, ...

e.g. SVT algorithm
I ‖A‖∗: nuclear norm (sum of singular values)

minimize
M̂

‖M̂‖∗

subject to |Yi j − M̂i j| ≤ Ei j, (i, j) ∈ Ω

→ sparse singular values (low rank)

June 19, 2019 Symposium in memory of Charles Stein 30 / 37



EB algorithm
We develop an empirical Bayes (EB) algorithm for matrix
completion.
EB is based on the following hierarchical model

I Same with the derivation of the Efron–Morris estimator
I C: scalar or diagonal matrix (unknown)

M ∼ Np,q(0, Ip ⊗ Σ)

Y | M ∼ Np,q(M, Ip ⊗C)

Goal: estimate M from observed entries of Y
I If Y is fully observed, it reduces to the previous problem.

→ EM algorithm !!
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EB algorithm

EB algorithm
E step: estimate (Σ,C) from M̂ and Y
M step: estimate M from Y and (Σ̂, Ĉ)
Iterate until convergence

Both steps can be solved analytically.
I Sherman-Morrison-Woodbery formula

We obtain two algorithms corresponding to C is scalar or
diagonal.
EB does not require heuristic parameter tuning other than
tolerance.
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Numerical results

Results on simulated data
I 1000 rows, 100 columns, rank = 30, 50 % entries observed
I observation noise: homogeneous (R = Iq)

error time

EB (scalar) 0.26 4.33

EB (diagonal) 0.26 4.26

SVT 0.48 1.44

SOFT-IMPUTE 0.50 3.58

OPTSPACE 0.89 67.74

Manopt 0.89 0.17

EB has the best accuracy.

June 19, 2019 Symposium in memory of Charles Stein 33 / 37



Numerical results: rank

Performance with respect to rank
I 1000 rows, 100 columns, 50 % entries observed
I observation noise: unit variance

EB has the best accuracy when r ≥ 20.
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Application to real data

Mice Protein Expression dataset
I expression levels of 77 proteins measured in the cerebral cortex

of 1080 mice
I from UCI Machine Learning Repository

error time

EB (scalar) 0.12 2.90

EB (diagonal) 0.11 3.35

SVT 0.84 0.17

SOFT-IMPUTE 0.29 2.14

OPTSPACE 0.33 12.39

Manopt 0.64 0.19

EB attains the best accuracy.
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Future work (tensor case)

How about tensors?

X = (Xi jk)

For tensors, even the definition of rank or singular values is not
clear..

Hopefully, some empirical Bayes method provides a natural
shrinkage for tensors.
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Summary
Efron–Morris estimator (Efron and Morris, 1972)

M̂EM(X) = X
(
Iq − (p − q − 1)(X>X)−1

)
minimax estimator of a normal mean matrix
natural extension of the James–Stein estimator

↓

Singular value shrinkage prior (M. and Komaki, Biometrika 2015)

πSVS(M) = det(M>M)−(p−q−1)/2

superharmonic (∆πSVS ≤ 0), natural generalization of the Stein prior
works well for low-rank matrices→ reduced-rank regression

Empirical Bayes matrix completion (M. and Komaki, 2019)

estimate unobserved entries of a matrix by exploting low-rankness

June 19, 2019 Symposium in memory of Charles Stein 37 / 37


