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Abstract

We develop a method for decomposing time series data into
oscillators (without band-pass filtering).

paper: Matsuda and Komaki (2017a&b, Neural Computation)
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Background: neural oscillation

3 / 42



Neural oscillation
neural time series: recording of brain activity

▶ EEG, MEG, fMRI, fNIRS

They are composed of several oscillation components.
▶ delta: 0.5-4 Hz, alpha: 8-13 Hz, beta: 13-20 Hz

Local Field Potential (LFP) from rat hippocampus

Theta component (6-10 Hz) is clearly seen.
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Phase of neural oscillation

Phase of neural time series plays an important role in neural
information processing.

phase reset occurs in response to external stimuli. (Makeig et
al., 2012; Lopour et al., 2013)
theta phase precession in hippocampal LFP encodes the
place. (O’Keefe and Recce, 1993)
phase synchronization is important for coordination of distant
neural assemblies. (Buzsaki, 2011)
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Conventional analysis with band-pass filtering
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Hilbert transform

y(t) 7→ yH(t) =
∫ ∞

−∞

y(τ)
t − τdτ

analytical signal (complex time series)

x(t) = y(t) + i yH(t)

In frequency domain,

X(ω) =


2Y(ω) (ω > 0)
Y(ω) (ω = 0)
0 (ω < 0)
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Hilbert transform
The phase ϕ(t) and amplitude r(t) are defined by the angle and
absolute value of x(t).

ϕ(t) = arg x(t), r(t) = |x(t)|

When y(t) = cosωt,

yH(t) = sinωt, x(t) = exp(iωt)

ϕ(t) = ωt, r(t) = 1
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Conventional analysis with band-pass filtering
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Limitations of band-pass filtering
requires subjective selection of filters

▶ definition of frequency band varies among studies..
▶ alpha = 8-13 Hz ? 9-12 Hz ?
▶ alpha/beta frequency may depend on individuals

does not account for measurement noise
distorts the waveform

▶ Siapas et al. (2005), methods section
▶ since the decomposition is exact even when the input contains

a mixture of signal and noise, both enter the instantaneous
phase and amplitude components, and thus any denoising must
occur at the earlier filtering step.

▶ This dictates the use of narrow band filters in conjunction with
this method that can distort the input signal waveform.

→We overcome them by state space model approach
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Oscillator decomposition
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State space model

general framework for estimating hidden dynamics from time

series data

xt+1 = f (xt, vt), vt ∼ p(vt)
yt = h(xt,wt), wt ∼ p(wt)

xt: state (unobserved), yt: data (observed)

The posterior p(xs | y1, · · · , yt) can be computed sequentially
▶ filtering (s = t), smoothing (s < t), prediction (s > t)
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Gaussian linear state space model

Special class of state space models

xt+1 = Fxt +Gvt, vt ∼ N(0,Q)
yt = Hxt + wt, wt ∼ N(0,R)

The posteriors p(xs | y1, · · · , yt) are Gaussian and they are
obtained by matrix computation (Kalman filter, Kalman
smoother).
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cf. Bayesian seasonal adjustment

State space models can be used to decompose time series

Kitagawa and Gersch (1984) developed a method for
decomposing economic time series into trend and seasonal
components based on a Gaussian linear state space model.

Tt+1 = FT Tt +GT vt, S t+1 = FS S t +GS vt, vt ∼ N(0,Q)

yt = Tt + S t + wt, wt ∼ N(0,R)

decomposition is obtained by smoothing

yt = Tt|N + S t|N + wt|N

Tt|N = E[Tt | Y1, · · · ,YN], S t|N = E[S t | Y1, · · · ,YN]
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cf. Bayesian seasonal adjustment

Construction Housing Starts North data
▶ Kitagawa and Gersch (1984)

Seasonal adjustment improves prediction accuracy.
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Model building
assumption: several oscillators underlie the time series data
Each oscillator rotates on a 2-dim. plane with fluctuation.

The observed time series is regarded as the sum of the
projections of the oscillators (plus noise).

▶ trigonometric function = projection of circular motion
▶ cf. Hilbert transform
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System model for oscillators
We describe each oscillator by a Gaussian linear model

▶ ∆t: sampling period

(
xt+1,1

xt+1,2

)
∼ N

(
a
(
cos(2π f∆t) − sin(2π f∆t)
sin(2π f∆t) cos(2π f∆t)

) (
xt,1

xt,2

)
,

(
σ2 0
0 σ2

))
f : frequency, a: regularity (0 < a < 1), σ2: power
In each time step, the oscillator rotates through an angle 2π f∆t
with fluctuation.

At each time point, the phase is defined as

ϕt = tan−1 xt,2

xt,1
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State space model for oscillator decomposition
K: number of oscillators

(
x(k)

t+1,1

x(k)
t+1,2

)
∼ N

(
ak

(
cos(2π fk∆t) − sin(2π fk∆t)
sin(2π fk∆t) cos(2π fk∆t)

) (
x(k)

t,1

x(k)
t,2

)
,

(
σ2

k 0
0 σ2

k

))
(k = 1, · · · ,K)

yt ∼ N

 K∑
k=1

x(k)
t,1 , τ

2


Based on the observation y1, · · · , yT , the posterior of xt is
calculated by the Kalman smoother.

→ decomposition of yt into x(1)
t,1 , · · · , x

(K)
t,1 is obtained

The phase of each oscillator is also estimated (with credible
interval).
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parameter estimation & model selection
Model parameters θK = ( f1, · · · , fK , a1, · · · , aK , σ

2
1, · · · , σ2

K , τ
2)

and number of oscillators K are determined in a data-driven
manner.

Model parameters are estimated by empirical Bayes method.
▶ maximization of marginal likelihood

θ̂K = arg max
θK

log p(y | θK)

Number of oscillators are determined by minimizing Akaike
Bayes Information Criterion (ABIC).

ABICK = −2 log p(y | θ̂K) + 2(3K + 1)

→ natural decomposition of time series data is attained
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Remark: initial value setting by AR model

We select the initial value for parameter estimation by using
the AR model
AR model can be viewed as a sum of oscillation components

▶ each characterstic root z represents an oscillator with frequency
argz

examine the location and sharpness of each peak in the fitted
AR spectrum
→ ak, fk

fit spectrum to periodogram based on the Whittle likelihood
→ σ2

k
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Simulation results
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Simulation setting

We generated time series with three oscillators from the
following model.

▶ data length: 1000
▶ sampling frequency: 200 Hz
▶ 25 Hz oscillator & 50 Hz oscillator & 75 Hz oscillator

log r(k)
t+1 ∼ N(bk log r(k)

t , 0.1
2) (k = 1, · · · ,K)

ϕ(k)
t+1 ∼ vM(ϕ(k)

t + ∆ϕk, κk) (k = 1, · · · ,K)

yt ∼ N

 K∑
k=1

r(k)
t cos ϕ(k)

t , τ
2


vM(µ, κ) is the von Mises distribution with center µ and
concentration κ.

22 / 42



parameter estimation & model selection

ABIC takes minimum at K = 3.

→ The proposed method selects the correct number of
oscillators

parameter estimates for K = 3

f̂1 = 25.22, f̂2 = 50.40, f̂3 = 75.10

→ The proposed method estimates the frequencies accurately
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decomposition

original time series
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decomposition
obtained three oscillation components

▶ with 67 % credible intervals
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phase estimation

mean squared errors of phases ϕ(1)
t , ϕ

(2)
t , ϕ

(3)
t (in radian)

ϕ(1) ϕ(2) ϕ(3)

proposed 0.23 0.16 0.13
Hilbert 0.27 0.37 0.48

The proposed method has better accuracy in phase
estimation.

▶ Hilbert transform uses band-pass filters with passband 20-30
Hz, 40-60 Hz, and 60-90 Hz.
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phase reset detection
time series with two oscillators (10 Hz & 30 Hz)

▶ several phase resets in 10 Hz oscillator
It was decomposed into 9.78Hz and 29.68Hz oscillators.
upper: estimated phase, lower: true phase
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The proposed method detects phase resets succeesfully.
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ripple detection
time series with ripples (intermittent oscillations)

g(t) = A cos8(2π f0t) sin(2π f1t) + 10 cos(2π f2t)

decompostion result
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The proposed method detects ripples succeesfully. 28 / 42



Application to real data
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Application to hippocampal LFP

Local Field Potential from rat hippocampus
▶ Mizuseki et al. (2009)

sampling frequency: 125 Hz
data length: 250 (two seconds)
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Decomposition (hippocampal LFP)
decomposed into six oscillators

f̂1 = 6.45, f̂2 = 8.00, f̂3 = 15.79, f̂4 = 34.63, f̂5 = 40.35, f̂6 = 55.44
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Their phases develop regularly.
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Interpretation (hippocampal LFP)

Two oscillators (6.45 Hz, 8.00 Hz) correspond to the theta
rhythm.

▶ Band-pass filtering with theta band cannot separate these
oscillators.

Another oscillator (15.79 Hz) corresponding to the alpha
rhythm likely exists.
Higher frequency oscillators are also evident.

▶ Future research may investigate the role of these oscillators,
including the potential for their phases to encode internal
information.

In this way, neural oscillators underlying the hippocampal LFP
are extracted in a data-driven manner.
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Application to Canadian Lynx data
annual number of the Canadian lynxes (1821 - 1934)

Among six oscillators, one oscillator (5 years period) showed
phase reset around 1850.

In this way, the phase dynamics may provide an interesting
insight from time series data. 33 / 42



Extension to multivariate time series
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Extension to multivariate time series
Several oscillators underlie multivariate time series.

▶ neural oscillators & electrodes
▶ earthquake origins & stations

model assumption: projection of each oscillator superposes on
each variable.

▶ projection describes amplitude & phase modulation
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State space model

(
x(k)

t+1,1

x(k)
t+1,2

)
= ak

(
cos(2π fk∆t) − sin(2π fk∆t)
sin(2π fk∆t) cos(2π fk∆t)

) (
x(k)

t,1

x(k)
t,2

)
+

(
v(k)

t,1

v(k)
t,2

)
,

yt, j =

K∑
k=1

(c jk,1x(k)
t,1 + c jk,2x(k)

t,2) + wt, j,

(v(k)
t,1 , v

(k)
t,2)⊤ ∼ N2(0, σ2

k I),

(wt,1, · · · ,wt,J)⊤ ∼ NJ(0, τ2I).
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System model

same with the univariate case

x(k)
t+1,1

x(k)
t+1,2

 = ak

(
cos(2π fk∆t) − sin(2π fk∆t)
sin(2π fk∆t) cos(2π fk∆t)

) x(k)
t,1

x(k)
t,2

 + v(k)
t,1

v(k)
t,2

 ,
v(k)

t,1
v(k)

t,2

 ∼ N2(0, σ2
kI),
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Observation model

yt, j =

K∑
k=1

(c jk,1x(k)
t,1 + c jk,2x(k)

t,2) + wt, j

(wt,1, · · · ,wt,J)⊤ ∼ NJ(0, τ2I)

yt, j = sum of inner products of x(k)
t and c jk = (c jk,1, c jk,2)

▶ c1k = (1, 0) for identifiablity
length and angle of c jk describe amplitude and phase
modulation

▶ e.g., shorter length for farther sensors
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Application to north/south sunspot data
The number of sunspots on northern/southern hemisphere

▶ from ICSU World Data System
▶ monthly data from Jan. 1992 to Aug. 2016 (data length: 296)
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South sunspot numbers seem to have a slight delay compared
to north sunspot numbers.
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Phase delay in north/south sunspot data
Our method decomposes this data into six oscillators.
The oscillator with 11.76 years period is dominant in power.

▶ It corresponds well to the well-known period in sunspot
numbers.
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Projection vector: (1, 0) for north and (0.82, 0.32) for south
→ south follows north with a delay of 0.69 years !!
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Summary

We developed a method for decomposing time series data into
oscillators (without band-pass filtering).
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