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Abstract

@ We develop a method for decomposing time series data into
oscillators (without band-pass filtering).
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@ paper: Matsuda and Komaki (2017a&b, Neural Computation)
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Background: neural oscillation
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Neural oscillation

@ neural time series: recording of brain activity
» EEG, MEG, fMRI, fNIRS

@ They are composed of several oscillation components.
» delta: 0.5-4 Hz, alpha: 8-13 Hz, beta: 13-20 Hz

@ Local Field Potential (LFP) from rat hippocampus
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@ Theta component (6-10 Hz) is clearly seen.
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Phase of neural oscillation

@ Phase of neural time series plays an important role in neural
information processing.

@ phase reset occurs in response to external stimuli. (Makeig et
al., 2012; Lopour et al., 2013)

@ theta phase precession in hippocampal LFP encodes the
place. (O’Keefe and Recce, 1993)

@ phase synchronization is important for coordination of distant
neural assemblies. (Buzsaki, 2011)
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Conventional analysis with band-pass filtering

raw EEG jWWWWM
‘ band-pass filtering
alpha (8-13 Hz) MMNM\/WW\/\MM/\/\MWNWMW

beta (13-20Hz) I

‘ Hilbert transform

alpha phase, beta power, ...
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Hilbert transform

(1) dr
-7

y(@) = yu(0) = f

@ analytical signal (complex time series)

x(#) = y(0) + i yu(?)
Im

yH(t)

@ In frequency domain,
2Y(w) (w>0)
X(w)=1Y(w) (w=0)
0 (w<0)

y(t)

Re
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Hilbert transform

@ The phase ¢(¢) and amplitude () are defined by the angle and
absolute value of x(z).

¢(1) = arg x(t), r(r) = |x(7)|

Im x(t)

t
AT

Re

y(®
@ When y(t) = cos wt,
yu(t) =sinwt, x(t) = exp(iwt)
o) =wt, r@) =1
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Conventional analysis with band-pass filtering

raw EEG jWWWWM
‘ band-pass filtering
alpha (8-13 Hz) MMNM\/WW\/\MM/\/\MWNWMW

beta (13-20Hz) I

‘ Hilbert transform

alpha phase, beta power, ...
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Limitations of band-pass filtering

@ requires subjective selection of filters
» definition of frequency band varies among studies..
» alpha=8-13Hz? 9-12Hz ?
» alpha/beta frequency may depend on individuals

@ does not account for measurement noise

@ distorts the waveform

» Siapas et al. (2005), methods section

» since the decomposition is exact even when the input contains
a mixture of signal and noise, both enter the instantaneous
phase and amplitude components, and thus any denoising must
occur at the earlier filtering step.

» This dictates the use of narrow band filters in conjunction with
this method that can distort the input signal waveform.

— We overcome them by state space model approach
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Oscillator decomposition
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State space model

@ general framework for estimating hidden dynamics from time
series data

Xev1 = [ ve),  ve ~ p(vy)

e = h(x,, we),  wy ~ p(wy)

@ x,: state (unobserved), y,: data (observed)

@ The posterior p(x, | y1,--- ,y,) can be computed sequentially
» filtering (s = 1), smoothing (s < 7), prediction (s > 1)
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Gaussian linear state space model

@ Special class of state space models

Xy1 = Fxi + Gvy,, v ~N(0, Q)
yl - th + Wyg, W ~ N(O, R)

@ The posteriors p(x; | y1,--- ,y;) are Gaussian and they are
obtained by matrix computation (Kalman filter, Kalman
smoother).
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cf. Bayesian seasonal adjustment

@ State space models can be used to decompose time series

@ Kitagawa and Gersch (1984) developed a method for
decomposing economic time series into trend and seasonal

components based on a Gaussian linear state space model.

Tin=FrT:+Grv,, S =FsS,+Gsv,, v, ~N(,Q)

}G = ]} + :;[ + Wy, Wy ~ PJ((),]?)

@ decomposition is obtained by smoothing

Ve =Tyn + Synv + wyy

Tt|N:E[Tt|Y1a""YN]’ St|N:E[St|Y19""YN]
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cf. Bayesian seasonal adjustment

@ Construction Housing Starts North data
» Kitagawa and Gersch (1984)
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@ Seasonal adjustment improves prediction accuracy.
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Model building

@ assumption: several oscillators underlie the time series data
@ Each oscillator rotates on a 2-dim. plane with fluctuation.

phase

projection

@ The observed time series is regarded as the sum of the
projections of the oscillators (plus noise).
» trigonometric function = projection of circular motion

» cf. Hilbert transform
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System model for oscillators

@ We describe each oscillator by a Gaussian linear model
» At: sampling period

X |y cosrfAt) —sinQRrfAD)\(x.1\ (o> O
Xia1o N\sin@rfAn  cos@afar) [\x.) {0 o2
@ f: frequency, a: regularity (0 < a < 1), o: power

@ In each time step, the oscillator rotates through an angle 2z fAt
with fluctuation.

@ At each time point, the phase is defined as

phase

_1 X2
¢t=tan IL

X1 /
k)\ projectic
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State space model for oscillator decomposition

@ K: number of oscillators

B N[y, [c05@RfiAD) —sin(rfiAn) XN (o0
® “\sin@rfidn  cos@rfian J\x0) N0 o7
k=1,---,K)
K
. N(Z <>)
k=1
@ Based on the observation yy, - - - , yr, the posterior of x; is
calculated by the Kalman smoother.

— decomposition of y, into x'\, - -+, x” is obtained

@ The phase of each oscillator is also estimated (with credible

interval).
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parameter estimation & model selection

@ Model parameters 0x = (fi,--- , fx, a1, ,ax, 01, -+ , 05, T°)
and number of oscillators K are determined in a data-driven
manner.

@ Model parameters are estimated by empirical Bayes method.
» maximization of marginal likelihood

91( = arg rréax log p(y | 0x)
K

@ Number of oscillators are determined by minimizing Akaike
Bayes Information Criterion (ABIC).

ABICx = —2log p(y | 0x) + 23K + 1)

— natural decomposition of time series data is attained

19/42



Remark: initial value setting by AR model

@ We select the initial value for parameter estimation by using
the AR model
@ AR model can be viewed as a sum of oscillation components

» each characterstic root z represents an oscillator with frequency
argz

@ examine the location and sharpness of each peak in the fitted
AR spectrum
e ak,ﬁ(

@ fit spectrum to periodogram based on the Whittle likelihood
- o7
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Simulation results
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Simulation setting

@ We generated time series with three oscillators from the
following model.

» data length: 1000
» sampling frequency: 200 Hz
» 25 Hz oscillator & 50 Hz oscillator & 75 Hz oscillator
log ¥, ~ N(blogr?,0.1%) (k=1,---,K)
¢ ~ WM + Adrk) (k=1 K)

t+1
(Z r(k) coS ¢(k) )

@ vM(u, k) is the von Mises distribution with center  and
concentration «.
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parameter estimation & model selection

@ ABIC takes minimum at K = 3.

— The proposed method selects the correct number of
oscillators

@ parameter estimates for K = 3
fi =25.22, f» = 50.40, f5 = 75.10

— The proposed method estimates the frequencies accurately
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decomposition

@ original time series
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decomposition

@ obtained three oscillation components
» with 67 % credible intervals
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phase estimation

@ mean squared errors of phases ¢

D 42

t 7t o

3 (in radian)

¢(1)

¢(2)

¢(3)

proposed

0.23

0.16

0.13

Hilbert

0.27

0.37

0.48

@ The proposed method has better accuracy in phase

estimation.

» Hilbert transform uses band-pass filters with passband 20-30

Hz, 40-60 Hz, and 60-90 Hz.
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phase reset detection

@ time series with two oscillators (10 Hz & 30 Hz)

» several phase resets in 10 Hz oscillator
@ It was decomposed into 9.78Hz and 29.68Hz oscillators.
@ upper: estimated phase, lower: true phase

RIAr,
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o

O

@ The proposed method detects phase resets succeesfully.
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ripple detection
@ time series with ripples (intermittent oscillations)

g=A c058(27rf0t) sin(2rfit) + 10 cos(2rm f>1)
@ decompostion result

@ The proposed method detects ripples succeesfully.

28/42



Application to real data



Application to hippocampal LFP

@ Local Field Potential from rat hippocampus
» Mizuseki et al. (2009)

@ sampling frequency: 125 Hz
@ data length: 250 (two seconds)
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Decomposition (hippocampal LFP)
@ decomposed into six oscillators

fi =645, 5, =8.00, f = 15.79, fy = 34.63, f5s = 40.35, fs = 55.44
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@ Their phases develop regularly.
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Interpretation (hippocampal LFP)

@ Two oscillators (6.45 Hz, 8.00 Hz) correspond to the theta
rhythm.

» Band-pass filtering with theta band cannot separate these
oscillators.
@ Another oscillator (15.79 Hz) corresponding to the alpha
rhythm likely exists.
@ Higher frequency oscillators are also evident.

» Future research may investigate the role of these oscillators,
including the potential for their phases to encode internal
information.

@ In this way, neural oscillators underlying the hippocampal LFP
are extracted in a data-driven manner.
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Application to Canadian Lynx data
@ annual number of the Canadian lynxes (1821 - 1934)

L
10 20 30 40 50 60 70 80 90 100 110

@ Among six oscillators, one oscillator (5 years period) showed
phase reset around 1850.

3.14
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@ In this way, the phase dynamics may provide an interesting
insight from time series data. 33/42



Extension to multivariate time series
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Extension to multivariate time series
@ Several oscillators underlie multivariate time series.
» neural oscillators & electrodes
» earthquake origins & stations
@ model assumption: projection of each oscillator superposes on
each variable.
» projection describes amplitude & phase modulation

variable 2

variable 3

>
variable 1
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State space model

(ng_)l’l) . (005(271 f A1) —sin(2n kat))( (k)) N (ngl))

k k| o k k
x§+)1,2 sin(2r fyAt)  cos(2nm fi At) 52) ng)

Z(Cjkl-x +C]k2x )+Wl]’

W)~ Na(0, o),

t,1°

Wity swi)' ~Ny(0,720).
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System model

@ same with the univariate case

(&J) S eskyviind (’“fﬁ)) ("i"f)

sinrfiAr)  cos@rfidr) ) x5) T W

%

(k)
( @5] ~ Na(0, o D),
Vt,z
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Observation model

K
k k
Vij = Z(Cjk,lxi’l) + CjraXiy) + Wi
k=1
2
(Wt,17 e ’WI,J)T ~ N](OaT I)

@ y,; = sum of inner products of x* and ¢jx = (.1, Cjx2)

» c1x = (1,0) for identifiablity
@ length and angle of ¢ describe amplitude and phase
modulation
» e.g., shorter length for farther sensors

e variable 2

variable 3
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Application to north/south sunspot data

@ The number of sunspots on northern/southern hemisphere
» from ICSU World Data System
» monthly data from Jan. 1992 to Aug. 2016 (data length: 296)

0 50 100 150 200 250 300

-40 56 1(;0 1éO 2(;0 25‘0 300
@ South sunspot numbers seem to have a slight delay compared
to north sunspot numbers.
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Phase delay in north/south sunspot data

@ Our method decomposes this data into six oscillators.
@ The oscillator with 11.76 years period is dominant in power.
» It corresponds well to the well-known period in sunspot
numbers.
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@ Projection vector: (1,0) for north and (0.82, 0.32) for south
— south follows north with a delay of 0.69 years !!
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Summary

@ We developed a method for decomposing time series data into
oscillators (without band-pass filtering).
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