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Abstract
Matrix scaling

@ classical problem with many applications

@ solved by an iterative algorithm called the Sinkhorn algorithm
@ Csiszar (1975): Sinkhorn algorithm = alternating e-projections

Operator scaling

@ generalization of matrix scaling to positive maps
@ Gurvits (2004): Sinkhorn algorithm for operator scaling

@ We investigate the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry.

matrix scaling

KL divergence

Fisher metric
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@ paper: M. and Soma. Linear Algebra and its Applications, 2022.
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Matrix scaling and Sinkhorn algorithm



Matrix scaling problem
@ Input: A € RT", reRY, ceRY
@ Output: diagonal matrices L € R}*™ and R € R}*" such that
LAR has the specified row/column sums:

Z(LAR)ij =r (i=1,...,n)
> (LAR);=¢; (j=1,...,n)

i=1

@ application
» Markov chain estimation (Sinkhorn, 1964)
» contingency table analysis (Morioka and Tsuda, 2011)
» optimal transport (Peyré and Cuturi, 2019)
» data assimilation (Reich, 2019)
» and more (Idel, 2016)
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Matrix scaling problem: example

05 04 0.1 1
A=104 02 0.7 r=c= |1
0.1 04 0.2 1
1.0136 0 0
L= 0 0.7324 0
0 0 1.4826
1.0548 0 0
R = 0 0.8734 0
0 0 1.0982

0.5346 0.3541 0.1113
LAR = | 0.3090 0.1279 0.5630
0.1564 0.5180 0.3256
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Sinkhorn algorithm (a.k.a. RAS method)
o Initialize A® = A, L=TandR=1
@ lterate the following for k = 0,1, 2, ... until convergence
AO 5 AQ) 5 A@) 5 ...y A*
@ Row-scaling (= left multiplication by a diagonal matrix)
‘ AE?’“) r.

(2k)
Zj’ A'L]'

(2k+1) __

1) 2k ) (23 (23
>y ALY

@ Column-scaling (= right multiplication by a diagonal matrix)

ACK+2) _ jAz(jz'k—H) Rt RS
ij - (2k+1)? 33 (2k+1)
Zi’ Ai’ j Zz’ A
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Sinkhorn algorithm: example

05 04 0.1 1
A=104 02 0.7 r=c= |1
0.1 04 0.2

AW = [ 0.3077 0.1538 0.5385

1
0.5000 0.4000 0.1000
0.1429 0.5714 0.2857

A® = [0.3237 0.1367 0.5826

0.5260 0.3555 0.1082
0.1503 0.5078 0.3092

A*=10.3090 0.1279 0.5630

0.5346 0.3541 0.1113
0.1564 0.5180 0.3256
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Sinkhorn’s theorem
@ Assume that A is positive (A € R}™):

A;>0 (i=1,...,n;j=1...,n)

Theorem (Sinkhorn, 1964)

For a positive matrix A, the solution (L, R) exists and it is unique up
to constant (L — AL, R — A~1R). The Sinkhorn algorithm
converges to the solution.

@ extension to nonnegative matix: Sinkhorn and Knopp (1967)

@ There are many approaches to prove this theorem (Idel, 2016)
» convex duality

nonlinear Perron-Frobenius

potential optimization

information geometry

v

v

v
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Sinkhorn = alternating e-projections
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Sinkhorn = alternating e-projections

@ We consider the following problem for convenience

@ Input: A € R}Y"

. H H X X
@ Output: diagonal matrices L € R} and R € RY}’)" such that

n

S (LAR); =+ (j=1,...,n)

n
i=1
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Notation

1= {AeR’}ri"

>3- 1)
i=1 j=1

- 1
=1

< 1
i=1

@ Il is viewed as a multinomial model

» The Fisher metric and e/m connections are naturally introduced
(Amari and Nagaoka, 2000)

@ Both II; and II, are m-flat subspaces
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Sinkhorn = alternating e-projections

@ From the viewpoint of information geometry, the Sinkhorn
algorithm is interpreted as alternating e-projections !

Theorem (Csiszar, 1975)

Each iteration of the Sinkhorn algorithm is the e-projection: the
e-geodesic from A%k to A®k+D) (from AZk+D) to ARK+2) ) js
orthogonal to II; (Il;) w.r.t. the Fisher metric.

@ Note: since II; and I, are m-flat, the e-projection is unique
» generalized Pythagorean theorem
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Proof
@ The e-geodesic from A@*) to AZk+D) jg
A(t) = C(t)_l eXp((l _ t) 10g A(2k) + thg A(2k+l))
= —1( A(2k)\1—t/ 4(2k+1)
=071 (A457) (A )

where 0 <t <1,C(t) = Zi,j(Agk))l‘t(Agk“))t, and each
operation is element-wise.

@ Thus,
%log A(t);; = =C'(t) + log A(2k+1) log Agk).
@ In particular, C’(1) coincides with the Kullback-Leibler
divergence:

(2k+1)

C'(1) = D(A(2k+1)||A(2k) ZA(zkH)l

(2k) )
ij
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Proof
@ Therefore, the e-representation of the tangent vector of the
e-geodesic at A®++1D js

d
X© = —log At
3 18 ()

t=1
D(APD[|ARR) + log AT — log AT,

@ From the definition of the Sinkhorn algorithm,

log Ag.k“) — log Ag —log (Z A(2k )

which depends only on 1.
@ Hence, each row vector of X(© is parallel to the all-one vector

(1, 1)
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Proof

@ On the other hand, consider the m-representation Y (™ of any
tangent vector of IT; at AGk+1),

@ Then, from definition of II;, each row vector of Y™ is
orthogonal to the all-one vector.

@ Therefore, X and Y are orthogonal with respect to the Fisher

metric:
Z X(e)Y(m _

@ Hence, the e-geodesic from A(Qk) to A@¥+1) is orthogonal to IT;.
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Sinkhorn minimizes KL divergence

@ Kullback—Leibler divergence

Bi;
D(B||A) = (BZ-]- log A—j —Bij + Az,-)
1j

i,J

Corollary (Csiszar, 1975)

Each iteration of the Sinkhorn algorithm minimizes KL divergence:

D(A@HD||ACHY = min D(B||A®)
l?eIIl

D(A(2k+2)||A(2k+1)) = min D(BllA(2k+1))
Bell,
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Convergence of Sinkhorn algorithm

Theorem (Csiszar, 1975)

The Sinkhorn algorithm converges to the e-projection A* of A onto
Hl N Hz:
D(A*||A) = min D(B||A)

Belli NIl

@ Proof is based on the generalized Pythagorean theorem:
K
D(A*||A) = D(A*[|A)) + Y " D(AW||A®), K — oo

k=1

Generalized Pythagorean theorem

If the e-geodesic from A; to A, and the m-geodesic from A, to Az
are orthogonal at A, w.r.t. the Fisher metric, then

D(As||A1) = D(As||A2) + D(A:||As)
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Operator scaling
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From matrix to operator

@ Recently, generalization of matrix scaling to positive maps
(operator scaling) is becoming more and more important.
» theoretical computer science (Gurvits, 2004; Garg et al., 2019+)
» mathematical physics (Georgiou and Pavon, 2015)

@ Gurvits (2004) extended the Sinkhorn algorithm to operator
scaling and several authors have investigated its properties
(Idel, 2016; Garg et al., 2019+).
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CP map and Kraus representation

@ Alinearmap T : C"*™ — C™*™ is called completely positive
(CP) if it has the Kraus representation:

T(X) =Y ViXV}
k

@ Then, the dual map 7™ : C**™ — C"*" is also CP with the
Kraus representation

T(X) =Y VXV
k

@ In quantum information theory, quantum operations are
described by trace-preserving CP (TPCP) maps.

X=0,trX=1= T(X)=0, tt T(X) =1
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Choi—Jamiolkowski representation

@ linear map T : C™*™ — C™*™
@ Choi—Jamiolkowski representation of T' (n? x n? matrix)
» Eij - n x n matrix with (E;j) 5 = 6;40;

T(Ell) T(Elz) e T(Eln)
CH(T) = T(L:JZI) T(]:%z) T(]l?zn)
T(Ew) T(Ewa) - T(Ean)

Theorem (Choi, 1975)

T : completely positive & CH(T) = O

@ We identify each CP map T with its Choi—Jamiolkowski
representation CH(T") in the following.
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Kronecker product and partial trace
@ Kronecker product ® : C"*™ x C™*" — Cn?xn’

allB s alnB
A®B=| : ..
amB - ap,B
@ partial trace try : Cr*xn® _y Cn*n (linear)

tri(A® B) = (trA)B, try(A® B) = (trB)A
@ Whenn =2and C € C*4,

_ (Ci1+Cs3 Cra+Cyy
tri(C) = (021 +Cs3 Cy + 044)

_ (Cii+Cy Ci3+ Co
tr2(C) = (031 +Cs Cs3+ 044)
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Operator scaling problem
@ Input: CP map T' (C™*™ — C™*™)
@ Output: L € C™*™ and R € C™*" such that

Trr(I) =T7 (1) =1,
where

T.r(X):= LT(RXR"L' =Y VXV, V,=LViR
k

@ In the Choi—-Jamiolkowski representation,
CH(T.r) =(R® L)CH(T)(R® L)

TL’R(I) =1 & tI‘l(CH(TL,R)) =1
T r(I) =1 & troy(CH(TLR)) =1
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Remark: relation to Edmonds problem
Edmonds problem (Edmonds, 1964)

For n x n matrices Ay, ..., Ag, decide if

Py(zq,...,zx) = det (sz ) = 0.

@ This problem has a randomized polynomial time algorithm.
» random substitution of z1, ..., zg

@ However, it is not known whether a deterministic polynomial
time algorithm exists or not.

@ Gurvits (2004) gave a deterministic polynomial time algorithm
for certain classes of inputs (Edmonds—Rado class) by
extending the Sinkhorn algorithm to operator scaling.

» Garg et al. (2019+) presented a detailed complexity analysis.
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Operator Sinkhorn algorithm (Gurvits, 2004)
@ Initialize Ty =Tand A=B =1

@ lterate the following for k = 0,1, 2, ... until convergence

To—)T1—>T2—>"'—)T*

@ left normalization (— Tox41(I) = 1)
Tor1(X) = Tou(I) ™ * T (X) T (1) /2
L Ty (1)™V2L

@ right normalization (— Ty, ,(I) = I)
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Operator Sinkhorn algorithm

@ We use the Choi—Jamiolkowski representation for convenience.

II={CH(T) | T : completely positive, tr T'(I) = tr T*(I) = n}
={p=O|trp=n}
I, = {CH(T) | T : completely positive, T'(I) = I'}
={pzO|tri(p) =1} CII
II, = {CH(T) | T : completely positive, T*(I) = I'}
={p=O|tr2(p) =1} CII

@ Putting py, := CH(T},), each iteration of operator Sinkhorn is
written as

paer1 = (I ® Toe(1) ™) poi (I @ Toa(I)™*) € TN

pori2 = (Typsr ()72 © Dporya (T (172 @ 1) € 0y
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Information geometry of
operator Sinkhorn algorithm
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operator Sinkhorn = alternating projection?

@ ltis not clear whether the operator Sinkhorn algorithm can be
viewed as alternating projection w.r.t. some divergence.
» open problem (Georgiou and Pavon, 2015; Gurvits, 2004; Idel,
2016)

matrix scaling | KL divergence

operator scaling ?

@ We investigate the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry (Amari and
Nagaoka, 2000; Fujiwara, 2015).

classical quantum
p>20,>p=1|p=0,trp=1
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Density matrix

@ In quantum information theory, a quantum state is described by
a density matrix p satisfying

p>=0, trp=1.

@ The operator Sinkhorn algorithm is viewed as updating density
matrices:

I={p=0O|trp=n}
I ={pz0|tri(p) =1} ClI
Iy ={p=O|tra(p) =1} C1II
par+1 = CH(Tory1) € I, porye = CH(Tor42) € 11y
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Riemannian metric for quantum states

@ In classical information geometry, the Fisher metric is the only
monotone metric (Cencov’s theorem).

@ However, in quantum information geometry, monotone metrics
are not unique.
» Each monotone metric is characterized by an operator monotone
function (Petz, 1996).
» Each monotone metric induces its own e-connection.

@ symmetric logarithmic derivative (SLD) metric
1 1
9,(X,Y) = Str (Lxp + pLx)Ly, Xp=5(Lxp+pLY)

@ right logarithmic derivative (RLD) metric
@ Bogoliubov metric
9, (X,Y) = tr (Xp)(Y log p)
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operator Sinkhorn = alternating e-projections (SLD) !
@ SLD metric
S(XY) = gir (o +pL0L, Xp= 5(Lso + oI5
@ e-geodesic from p to o under the SLD metric (0 <t < 1)
V() = K'pK', K=p '#0

Theorem (M. and Soma, 2022)

Each iteration of the operator Sinkhorn algorithm is the unique
e-projection w.r.t. SLD metric: the e-geodesic from pgy t0 pox1 (from
P2k+1 10 poxyo ) is orthogonal to II; (II5) w.r.t. the SLD metric.

@ Does it minimize some divergence ??
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proof
@ The e-geodesic from pgy t0 poy11 iS

¥(t) = K'puK', K = pyl#tpoeis = I ® Top(I) ™2

@ The e-representation LS, of the tangent vector X of the
e-geodesic at poi11 is the solution of the Lyapunov equation:

1

§(L§(P2k+1 + pae+1L) = 7' (1) = (log K)paxt1 + paxt1(log K)

@ Since the solution of the Lyapunov equation is unique,
L5 =2log K = —I ® log Tox(I)

@ Therefore, X is orthogonal to IT; w.r.t. SLD metric.

@ Uniqueness is shown similarly.

» not from generalized Pythagorean theorem
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Quantum relative entropy (failed)

@ quantum relative entropy
» a quantum analogue of KL divergence

D(p||o) = tr p(log p — log o)

@ Itinduces a dually flat structure with the Bogoliubov metric.

» It is the only case where the e-connection becomes torsion-free
(Nagaoka)

@ However, this e-projection does not coincide with the operator
Sinkhorn iteration..

o IRAMRI LIS, ZOHRMBEBEIX. INEXETOETFRETE
DEBDHRTHALDEERHRVWEINTVWAWVNDTH
%, DFYEFRETEMICERZF DIBERBMEEDIFEXK
EHIETALIE. FNIXBARICHRIERLZ A E LD
BEHNSDHRMNEMHD Z&ICk B, | (&R, 2015)
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Another divergence
@ capacity
det T'(X)
T)= inf ———= >
“p(1) = 25 "qerx > °
@ From an analogy to matrix scaling, we expect
—logcap(T) = min D(p||CH(T))

pEIIlrﬂI2

@ By considering the convex duality, we can guess

D(pllo) = 2 tr plog(p#to ™),

where A#B = AY?(A"Y/2BA~Y/2)1/2 AY/2 is the matrix
geometric mean (Bhatia, 1997).

@ In fact, Nagaoka (1994) already discussed this divergence with
relation to the SLD metric.

» To avoid the torsion of e-connection, he considered

one-dimensional manifolds.
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Numerical check

@ —logcap(T) (x-axis) v.s. divergence (y-axis)
@ left: quantum relative entropy
@ right: geometric mean divergence

5

41

3l

0 0
0 1 2 3 4 5 o] 1 2 3 4

@ The geometric mean divergence has better fit (but not exact?)
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Summary

@ Operator scaling is a generalization of matrix scaling with many
applications.

@ We investigated the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry.

matrix scaling | KL divergence | Fisher metric

operator scaling 277 SLD metric

@ Future work: divergence in operator Sinkhorn

» quantum analogue of KL divergence is not unique
» generalized Pythagorean theorem for statistical manifolds
admitting torsion (Henmi and Matsuzoe, 2019) ?
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