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Abstract
Matrix scaling

classical problem with many applications
solved by an iterative algorithm called the Sinkhorn algorithm
Csiszár (1975): Sinkhorn algorithm = alternating e-projections

Operator scaling
generalization of matrix scaling to positive maps
Gurvits (2004): Sinkhorn algorithm for operator scaling

We investigate the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry.

matrix scaling KL divergence Fisher metric
operator scaling ? ?

paper: M. and Soma. Linear Algebra and its Applications, 2022.
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Matrix scaling and Sinkhorn algorithm
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Matrix scaling problem
Input: A ∈ Rn×n

+ , r ∈ Rn
+, c ∈ Rn

+
Output: diagonal matrices L ∈ Rn×n

+ and R ∈ Rn×n
+ such that

LAR has the specified row/column sums:
n∑

j=1

(LAR)ij = ri (i = 1, . . . , n)

n∑
i=1

(LAR)ij = cj (j = 1, . . . , n)

application
▶ Markov chain estimation (Sinkhorn, 1964)
▶ contingency table analysis (Morioka and Tsuda, 2011)
▶ optimal transport (Peyré and Cuturi, 2019)
▶ data assimilation (Reich, 2019)
▶ and more (Idel, 2016)
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Matrix scaling problem: example

A =

0.5 0.4 0.1
0.4 0.2 0.7
0.1 0.4 0.2

 r = c =

1
1
1



L =

1.0136 0 0
0 0.7324 0
0 0 1.4826



R =

1.0548 0 0
0 0.8734 0
0 0 1.0982



LAR =

0.5346 0.3541 0.1113
0.3090 0.1279 0.5630
0.1564 0.5180 0.3256


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Sinkhorn algorithm (a.k.a. RAS method)
Initialize A(0) = A, L = I and R = I

Iterate the following for k = 0, 1, 2, . . . until convergence

A(0) → A(1) → A(2) → · · · → A∗

Row-scaling (= left multiplication by a diagonal matrix)

A
(2k+1)
ij =

riA
(2k)
ij∑

j′ A
(2k)
ij′

, Lii ← Lii
ri∑

j′ A
(2k)
ij′

Column-scaling (= right multiplication by a diagonal matrix)

A
(2k+2)
ij =

cjA
(2k+1)
ij∑

i′ A
(2k+1)
i′j

, Rjj ← Rjj

cj∑
i′ A

(2k+1)
i′j
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Sinkhorn algorithm: example

A =

0.5 0.4 0.1
0.4 0.2 0.7
0.1 0.4 0.2

 r = c =

1
1
1



A(1) =

0.5000 0.4000 0.1000
0.3077 0.1538 0.5385
0.1429 0.5714 0.2857



A(2) =

0.5260 0.3555 0.1082
0.3237 0.1367 0.5826
0.1503 0.5078 0.3092



A∗ =

0.5346 0.3541 0.1113
0.3090 0.1279 0.5630
0.1564 0.5180 0.3256


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Sinkhorn’s theorem
Assume that A is positive (A ∈ Rn×n

++ ):

Aij > 0 (i = 1, . . . , n; j = 1 . . . , n)

Theorem (Sinkhorn, 1964)
For a positive matrix A, the solution (L,R) exists and it is unique up
to constant (L→ λL,R→ λ−1R). The Sinkhorn algorithm
converges to the solution.

extension to nonnegative matix: Sinkhorn and Knopp (1967)

There are many approaches to prove this theorem (Idel, 2016)
▶ convex duality
▶ nonlinear Perron-Frobenius
▶ potential optimization
▶ information geometry
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Sinkhorn = alternating e-projections
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Sinkhorn = alternating e-projections

We consider the following problem for convenience

Input: A ∈ Rn×n
++

Output: diagonal matrices L ∈ Rn×n
++ and R ∈ Rn×n

++ such that
n∑

i=1

(LAR)ij =
1
n

(j = 1, . . . , n)

n∑
j=1

(LAR)ij =
1
n

(i = 1, . . . , n)
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Notation

Π =
{
A ∈ Rn×n

++

∣∣∣∣∣
n∑

i=1

n∑
j=1

Aij = 1
}

Π1 =
{
A ∈ Rn×n

++

∣∣∣∣∣
n∑

j=1

Aij =
1
n

(i = 1, · · · , n)
}
⊂ Π

Π2 =
{
A ∈ Rn×n

++

∣∣∣∣∣
n∑

i=1

Aij =
1
n

(j = 1, · · · , n)
}
⊂ Π

Π is viewed as a multinomial model
▶ The Fisher metric and e/m connections are naturally introduced

(Amari and Nagaoka, 2000)
Both Π1 and Π2 are m-flat subspaces
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Sinkhorn = alternating e-projections

From the viewpoint of information geometry, the Sinkhorn
algorithm is interpreted as alternating e-projections !

Theorem (Csiszár, 1975)
Each iteration of the Sinkhorn algorithm is the e-projection: the
e-geodesic from A(2k) to A(2k+1) (from A(2k+1) to A(2k+2) ) is
orthogonal to Π1 (Π2) w.r.t. the Fisher metric.

Note: since Π1 and Π2 are m-flat, the e-projection is unique
▶ generalized Pythagorean theorem
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Proof
The e-geodesic from A(2k) to A(2k+1) is

A(t) = C(t)−1 exp((1− t) logA(2k) + t logA(2k+1))
= C(t)−1(A(2k)

ij )1−t(A(2k+1)
ij )t,

where 0 ≤ t ≤ 1, C(t) =
∑

i,j(A
(2k)
ij )1−t(A(2k+1)

ij )t, and each
operation is element-wise.
Thus,

d
dt logA(t)ij = −C

′(t) + logA(2k+1)
ij − logA(2k)

ij .

In particular, C ′(1) coincides with the Kullback–Leibler
divergence:

C ′(1) = D(A(2k+1)||A(2k)) =
∑
i,j

A
(2k+1)
ij log

A
(2k+1)
ij

A
(2k)
ij

.
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Proof
Therefore, the e-representation of the tangent vector of the
e-geodesic at A(2k+1) is

X(e) = d
dt logA(t)ij

∣∣∣∣
t=1

= −D(A(2k+1)||A(2k)) + logA(2k+1)
ij − logA(2k)

ij .

From the definition of the Sinkhorn algorithm,

logA(2k+1)
ij − logA(2k)

ij = − log
(∑

j′

A
(2k)
ij′

)
,

which depends only on i.
Hence, each row vector of X(e) is parallel to the all-one vector
(1, · · · , 1).
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Proof

On the other hand, consider the m-representation Y (m) of any
tangent vector of Π1 at A(2k+1).
Then, from definition of Π1, each row vector of Y (m) is
orthogonal to the all-one vector.
Therefore, X and Y are orthogonal with respect to the Fisher
metric:

⟨X, Y ⟩ =
∑
i,j

X
(e)
ij Y

(m)
ij = 0.

Hence, the e-geodesic from A(2k) to A(2k+1) is orthogonal to Π1.
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Sinkhorn minimizes KL divergence

Kullback–Leibler divergence

D(B||A) =
∑
i,j

(
Bij log

Bij

Aij
−Bij + Aij

)

Corollary (Csiszár, 1975)
Each iteration of the Sinkhorn algorithm minimizes KL divergence:

D(A(2k+1)||A(2k)) = min
B∈Π1

D(B||A(2k))

D(A(2k+2)||A(2k+1)) = min
B∈Π2

D(B||A(2k+1))
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Convergence of Sinkhorn algorithm
Theorem (Csiszár, 1975)
The Sinkhorn algorithm converges to the e-projection A∗ of A onto
Π1 ∩ Π2:

D(A∗||A) = min
B∈Π1∩Π2

D(B||A)

Proof is based on the generalized Pythagorean theorem:

D(A∗||A) = D(A∗||A(K)) +
K∑
k=1

D(A(k)||A(k−1)), K →∞

Generalized Pythagorean theorem
If the e-geodesic from A1 to A2 and the m-geodesic from A2 to A3
are orthogonal at A2 w.r.t. the Fisher metric, then

D(A3||A1) = D(A3||A2) +D(A2||A1)
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Operator scaling
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From matrix to operator

Recently, generalization of matrix scaling to positive maps
(operator scaling) is becoming more and more important.

▶ theoretical computer science (Gurvits, 2004; Garg et al., 2019+)
▶ mathematical physics (Georgiou and Pavon, 2015)

Gurvits (2004) extended the Sinkhorn algorithm to operator
scaling and several authors have investigated its properties
(Idel, 2016; Garg et al., 2019+).
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CP map and Kraus representation
A linear map T : Cn×n → Cn×n is called completely positive
(CP) if it has the Kraus representation:

T (X) =
∑
k

VkXV †
k

Then, the dual map T ∗ : Cn×n → Cn×n is also CP with the
Kraus representation

T ∗(X) =
∑
k

V †
kXVk

In quantum information theory, quantum operations are
described by trace-preserving CP (TPCP) maps.

X ⪰ O, tr X = 1 ⇒ T (X) ⪰ O, tr T (X) = 1
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Choi–Jamiolkowski representation
linear map T : Cn×n → Cn×n

Choi–Jamiolkowski representation of T (n2 × n2 matrix)
▶ Eij : n× n matrix with (Eij)i′j′ = δii′δjj′

CH(T ) =


T (E11) T (E12) · · · T (E1n)
T (E21) T (E22) · · · T (E2n)

...
...

. . .
...

T (En1) T (En2) · · · T (Enn)


Theorem (Choi, 1975)

T : completely positive ⇔ CH(T ) ⪰ O

We identify each CP map T with its Choi–Jamiolkowski
representation CH(T ) in the following.
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Kronecker product and partial trace
Kronecker product ⊗ : Cn×n × Cn×n → Cn2×n2

A⊗B =

a11B · · · a1nB
...

. . .
...

an1B · · · annB


partial trace trk : Cn2×n2 → Cn×n (linear)

tr1(A⊗B) = (trA)B, tr2(A⊗B) = (trB)A

When n = 2 and C ∈ C4×4,

tr1(C) =
(
C11 + C33 C12 + C34
C21 + C43 C22 + C44

)

tr2(C) =
(
C11 + C22 C13 + C24
C31 + C42 C33 + C44

)
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Operator scaling problem
Input: CP map T (Cn×n → Cn×n)
Output: L ∈ Cn×n and R ∈ Cn×n such that

TL,R(I) = T ∗
L,R(I) = I,

where

TL,R(X) := LT (RXR†)L† =
∑
k

ṼkXṼ †
k , Ṽk = LVkR

In the Choi–Jamiolkowski representation,

CH(TL,R) = (R⊗ L)CH(T )(R⊗ L)

TL,R(I) = I ⇔ tr1(CH(TL,R)) = I

T ∗
L,R(I) = I ⇔ tr2(CH(TL,R)) = I
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Remark: relation to Edmonds problem
Edmonds problem (Edmonds, 1964)
For n× n matrices A1, . . . , Ak, decide if

PA(x1, . . . , xk) = det
(

k∑
i=1

xiAi

)
≡ 0.

This problem has a randomized polynomial time algorithm.
▶ random substitution of x1, . . . , xk

However, it is not known whether a deterministic polynomial
time algorithm exists or not.

Gurvits (2004) gave a deterministic polynomial time algorithm
for certain classes of inputs (Edmonds–Rado class) by
extending the Sinkhorn algorithm to operator scaling.

▶ Garg et al. (2019+) presented a detailed complexity analysis.
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Operator Sinkhorn algorithm (Gurvits, 2004)
Initialize T0 = T and A = B = I

Iterate the following for k = 0, 1, 2, . . . until convergence

T0 → T1 → T2 → · · · → T∗

left normalization (→ T2k+1(I) = I)

T2k+1(X) = T2k(I)−1/2T2k(X)T2k(I)−1/2

L← T2k(I)−1/2L

right normalization (→ T ∗
2k+2(I) = I)

T2k+2(X) = T2k+1(T ∗
2k+1(I)−1/2XT ∗

2k+1(I)−1/2)

R← T ∗
2k+1(I)−1/2R
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Operator Sinkhorn algorithm
We use the Choi–Jamiolkowski representation for convenience.

Π = {CH(T ) | T : completely positive, tr T (I) = tr T ∗(I) = n}
= {ρ ⪰ O | tr ρ = n}

Π1 = {CH(T ) | T : completely positive, T (I) = I}
= {ρ ⪰ O | tr1(ρ) = I} ⊂ Π

Π2 = {CH(T ) | T : completely positive, T ∗(I) = I}
= {ρ ⪰ O | tr2(ρ) = I} ⊂ Π

Putting ρk := CH(Tk), each iteration of operator Sinkhorn is
written as

ρ2k+1 = (I ⊗ T2k(I)−1/2)ρ2k(I ⊗ T2k(I)−1/2) ∈ Π1

ρ2k+2 = (T ∗
2k+1(I)−1/2 ⊗ I)ρ2k+1(T ∗

2k+1(I)−1/2 ⊗ I) ∈ Π2
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Information geometry of
operator Sinkhorn algorithm
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operator Sinkhorn = alternating projection?

It is not clear whether the operator Sinkhorn algorithm can be
viewed as alternating projection w.r.t. some divergence.

▶ open problem (Georgiou and Pavon, 2015; Gurvits, 2004; Idel,
2016)

matrix scaling KL divergence
operator scaling ?

We investigate the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry (Amari and
Nagaoka, 2000; Fujiwara, 2015).

classical quantum
p ≥ 0,

∑
k pk = 1 ρ ⪰ O, tr ρ = 1
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Density matrix

In quantum information theory, a quantum state is described by
a density matrix ρ satisfying

ρ ⪰ O, tr ρ = 1.

The operator Sinkhorn algorithm is viewed as updating density
matrices:

Π = {ρ ⪰ O | tr ρ = n}
Π1 = {ρ ⪰ O | tr1(ρ) = I} ⊂ Π
Π2 = {ρ ⪰ O | tr2(ρ) = I} ⊂ Π

ρ2k+1 = CH(T2k+1) ∈ Π1, ρ2k+2 = CH(T2k+2) ∈ Π2
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Riemannian metric for quantum states
In classical information geometry, the Fisher metric is the only
monotone metric (Cencov’s theorem).

However, in quantum information geometry, monotone metrics
are not unique.

▶ Each monotone metric is characterized by an operator monotone
function (Petz, 1996).

▶ Each monotone metric induces its own e-connection.

symmetric logarithmic derivative (SLD) metric

gSρ(X, Y ) = 1
2tr (L

S
Xρ+ ρLS

X)LS
Y , Xρ = 1

2(L
S
Xρ+ ρLS

X)

right logarithmic derivative (RLD) metric
Bogoliubov metric

gBρ (X, Y ) = tr (Xρ)(Y log ρ)
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operator Sinkhorn = alternating e-projections (SLD) !
SLD metric

gSρ(X, Y ) = 1
2tr (L

S
Xρ+ ρLS

X)LS
Y , Xρ = 1

2(L
S
Xρ+ ρLS

X)

e-geodesic from ρ to σ under the SLD metric (0 ≤ t ≤ 1)

γ(t) = KtρKt, K = ρ−1#σ

Theorem (M. and Soma, 2022)
Each iteration of the operator Sinkhorn algorithm is the unique
e-projection w.r.t. SLD metric: the e-geodesic from ρ2k to ρ2k+1 (from
ρ2k+1 to ρ2k+2 ) is orthogonal to Π1 (Π2) w.r.t. the SLD metric.

Does it minimize some divergence ??
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proof
The e-geodesic from ρ2k to ρ2k+1 is

γ(t) = Ktρ2kK
t, K = ρ−1

2k #ρ2k+1 = I ⊗ T2k(I)−1/2

The e-representation LS
X of the tangent vector X of the

e-geodesic at ρ2k+1 is the solution of the Lyapunov equation:

1
2(L

S
Xρ2k+1 + ρ2k+1L

S
X) = γ′(1) = (logK)ρ2k+1 + ρ2k+1(logK)

Since the solution of the Lyapunov equation is unique,

LS
X = 2 logK = −I ⊗ log T2k(I)

Therefore, X is orthogonal to Π1 w.r.t. SLD metric.

Uniqueness is shown similarly.
▶ not from generalized Pythagorean theorem
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Quantum relative entropy (failed)
quantum relative entropy

▶ a quantum analogue of KL divergence

D(ρ||σ) = tr ρ(log ρ− log σ)

It induces a dually flat structure with the Bogoliubov metric.
▶ It is the only case where the e-connection becomes torsion-free

(Nagaoka)

However, this e-projection does not coincide with the operator
Sinkhorn iteration..

「皮肉なことに、この幾何構造は、これまでの量子統計学
の進展の中で何らの重要性も見いだされていないのであ
る。つまり量子統計学的に意味を持つ情報幾何構造の探求
を目指すならば、それは必然的に双対平坦多様体という楽
園からの訣別を伴うことになる。」（藤原, 2015）
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Another divergence
capacity

cap(T ) = inf
X≻O

detT (X)
detX ≥ 0

From an analogy to matrix scaling, we expect

− log cap(T ) = min
ρ∈Π1∩Π2

D(ρ||CH(T ))

By considering the convex duality, we can guess

D(ρ||σ) = 2 tr ρ log(ρ#σ−1),

where A#B = A1/2(A−1/2BA−1/2)1/2A1/2 is the matrix
geometric mean (Bhatia, 1997).
In fact, Nagaoka (1994) already discussed this divergence with
relation to the SLD metric.

▶ To avoid the torsion of e-connection, he considered
one-dimensional manifolds.
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Numerical check

− log cap(T ) (x-axis) v.s. divergence (y-axis)
left: quantum relative entropy
right: geometric mean divergence

The geometric mean divergence has better fit (but not exact?)
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Summary

Operator scaling is a generalization of matrix scaling with many
applications.
We investigated the operator Sinkhorn algorithm from the
viewpoint of quantum information geometry.

matrix scaling KL divergence Fisher metric
operator scaling ??? SLD metric

Future work: divergence in operator Sinkhorn
▶ quantum analogue of KL divergence is not unique
▶ generalized Pythagorean theorem for statistical manifolds

admitting torsion (Henmi and Matsuzoe, 2019) ?

36 / 39



References

S. Amari and H. Nagaoka. Methods of Information Geometry.
Oxford University Press, 2000.
R. Bhatia. Matrix Analysis. Springer, 1997.
M. D. Choi. Completely positive linear maps on complex
matrices. Linear Algebra and its Applications, 10, 285–290,
1975.
I. Csiszár. I-divergence geometry of probability distributions.
The Annals of Probability, 3, 146–158, 1975.
A. Fujiwara. Foundations of Information Geometry.
Makino-shoten, 2015. (in Japanese)
A. Garg, L. Gurvits, R. Oliveira and A. Wigderson. Operator
Scaling: Theory and Applications. Foundations of
Computational Mathematics, to appear.

37 / 39



References
T. T. Georgiou and M. Pavon. Positive contraction mappings for
classical and quantum Schrödinger systems. Journal of
Mathematical Physics, 56, 033301, 2015.
L. Gurvits. Classical complexity and quantum entanglement.
Journal of Computer and System Sciences, 69, 448–484, 2004.
M. Idel. A review of matrix scaling and Sinkhorn’s normal form
for matrices and positive maps. arXiv:1609.06349.
T. Matsuda and T. Soma. Information geometry of operator
scaling. Linear Algebra and Its Applications, 649, 240–267,
2022.
R. Morioka and K. Tsuda. Information geometry of input-output
table. Technical Report IEICE, 110, 161–168, 2011. (in
Japanese)
H. Nagaoka. Differential geometrical aspects of quantum state
estimation and relative entropy. In Quantum Communication,
Computing, and Measurement, Plenum Press, 1994.

38 / 39



References

D. Petz. Monotone metrics on matrix spaces. Linear Algebra
and its Applications, 244, 81–96, 1996.
G. Peyré and M. Cuturi. Computational Optimal Transport.
Foundations and Trends in Machine Learning, 11, 355–607,
2019.
S. Reich. Data assimilation: The Schrödinger perspective. Acta
Numerica, 28, 635–711, 2019.
R. Sinkhorn. A relationship between arbitrary positive matrices
and doubly stochastic matrices, The Annals of Mathematical
Statistics, 35, 876–879, 1964.
R. Sinkhorn and P. Knopp. Concerning nonnegative matrices
and doubly stochastic matrices, Pacific Journal of Mathematics,
21, 343–348, 1967.

39 / 39


