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Abstract

@ Akaike information criterion (AIC) enables data-driven selection
from normalized models.

AIC = —2logp(z | §) + 2k

» image from Google (Nov 5, 2017; Akaike’s 90th birthday)

@ We develop information criteria for non-normalized models.

MLE Kullback—Leibler divergence | AIC, TIC
score matching Fisher divergence SMIC
NCE Bregman divergence NCIC
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Non-normalized models

p(z | 6) = ﬁﬁ(w 16)

2(0) = / 5z | 6)dz

@ Some statistical models are defined by p(z | #) and the
normalization constant Z () is computationally intractable

» e.g. Markov random field, distribution on manifolds

@ also known as "energy-based model" in machine learning

p(z | 0) = exp(—E(z | 0))
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Estimation methods for non-normalized models
(216) = ——7(z | )
2(0) = / (@ | 6)dz

@ estimate 6 from z1,...,zx ~ p(x | 6)

@ MLE is computationally intensive for non-normalized models..

@ Several methods have been developed that do not require
computation of Z(0).
» pseudo-likelihood (Besag, 1974)
» contrastive divergence (Hinton, 2002)
» score matching (Hyvéarinen, 2005)
» noise contrastive estimation (Gutmann and Hyvérinen, 2012)
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Divergence viewpoint
@ divergence (“distance" between probability distributions)

D(q,p) >0, D(q,p)=0&q=0p

@ empirical distribution

R 1 < data
4(z) = N 25(95 — Tt)
=1 projection
model
@ projection estimator
estimate
O = argmin D(g, po)
0
MLE Kullback—Leibler divergence
score matching Fisher divergence
NCE Bregman divergence
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MLE = KL projection

@ Maximum likelihood estimator (MLE)

N
éMLE = argznax Zlogp(:ct | 0)
t=1

@ Kullback-Leibler divergence

Dxw(q,pe) = / q(2) log p(qz(T)e)dz

@ MLE = KL projection

éMLE = arg;nin DKL(@, Pe)
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Score matching
(Hyvarinen, 2005)



Score function

q(z): probability density on R4

@ score function

0 0
V.logq(z) = <(9—x1 logq(z),..., Er log q(%))

@ Important: score function does not involve Z(6) !!

1

e 6) = 50

plz | )

Velogp(z | §) = Vi logp(z | 6)
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Fisher divergence

@ Fisher divergence = L? distance between score functions

D(g,p) = / IV, log a(z) — V. log (@) ¢(e)dz

@ By using integration by parts in R¢,

Dr(q,p) = g(q) + dsm(q,p)

dsni(a,p) = / (28, log p(z) + | V. log p()||?) ¢(z)dz
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Score matching

@ Fisher discrepancy from empirical distribution

2

dsm(g, pe) = Z (2A; log B(x; | 6) + ||V log B(z: | 6)|)

@ Important: dsm (g, pe) does not involve Z(6) !!

@ score matching estimator
Osm = arg;nin dsm(d, po)

@ This estimator has consistency and asymptotic normality under
mild regularity conditions (Hyvéarinen, 2005).
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Noise contrastive estimation
(Gutmann and Hyvérinen, 2012)
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Noise contrastive estimation (NCE)
logp(z | 0,c) :=logp(z | 0) +¢c, c=—logZ(6)

@ NCE estimates 6 and ¢ simultaneously.

@ NCE is based on discrimination between data and noise.
» similar in spirit to Generative Adversarial Network (GAN)

@ In addition to data z1,--- ,xy ~ p(x | #), we generate noise
samples y1, - - - , yps from a noise distribution n(y).
» should be difficult to discriminate from data

12/42




Noise contrastive estimation (NCE)

@ The estimate is defined to discriminate between data and noise
as accurately as possible.

(Ance, énce) = arg Ho}lcn dnce(6, ¢)

Np(z: | 6,c)
1
dNCE(H ¢ Z 08 Np Ty | 6 C) + Mn(xt)

_ Z log Mn(ye)
" Np(y: | 0,¢) + Mn(y)
® dncr: negative log-likelihood of the logistic regression classifier

@ This estimator has consistency and asymptotic normality under
mild regularity conditions (Gutmann and Hyvarinen, 2012).
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Bregman divergence induced by NCE

@ Gutmann and Hirayama (2011): NCE can be interpreted as
projection with respect to a Bregman divergence

Dres(a.p) = [ dy (45,25 ) n(a)da

ds(a,b) = f(a) — £(b) — f'(b)(a —b)

f(z) =zlogz — <% —|—x) log (1 + %x)

@ Pihlaja et al. (2010) compared other choices of f in simulation
@ Uehara et al. (2018): this f minimizes the asymptotic variance
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Akaike Information Criterion (AIC) and
Takeuchi Information Criterion (TIC)



Setting
Xla"'7XNNQ(:E)7 N — o0

@ candidate model: p(z | 9)
@ Maximum Likelihood Estimator (MLE)

N
éMLE(xN) = arg mgxz log p(z: | 0)
t=1

@ We want to select a model with smaller KL divergence from the
true distribution

Dxv(q(2),p(2 | byee(z™)))
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KL discrepancy and bias correction
@ Kullback—Leibler discrepancy

dir(q, Onee(z")) = —Eqyllog p(z | fywe(z™))]

is equivalent to Kullback—-Leibler divergence (up to constant)
D1 (g, Oie(z)) = E,[log ¢(2)] + dxr(q, (™))
— We estimate expected KL discrepancy for model selection
@ The estimate
1
dKL(q\, HMLE(CL'N)) = —N tzz;logp(mt | 9MLE(:EN))
has negative bias becuase it uses data twice.

— We correct its bias
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Akaike Information Criterion
@ Akaike Information Criterion (AIC; Akaike, 1974)

N
AIC = -2 Zlogp(xt | Ovire(z)) + 2 - dim(6)
t=1
» second term: bias correction

Proposition

If the model is well-specified (g(z) = p(z | %)), then AIC is an
approximately unbiased estimator of the expected KL discrepancy:

Eo[AIC] = —2NEg[log p(z | Oyre(z))] + O(N )
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Takeuchi Information Criterion (TIC)
@ How about mis-specified case?
@ Takeuchi Information Criterion (TIC)

N
TIC = -2 logp(: | by (z)) + 2tr(17 )

t=1

“—lfzi (w0 | 0) o Togp(a: | 0)
zg—N :13 ng-’lft 0 og P\ Tt

0=Opre(zN)

0=0n1r(zN)

Proposition

E,[TIC] = ~2NE,[log p(z | fyize(2))] + o(1)
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Information criterion for NCE
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Recall: NCE and Bregman divergence
@ Bregman divergence

Dxce(q,p) = 9(q) + dnce(q, p)

@ NCE

(AncE, éxce) = argmin dyog(d, Do.c)

f,c

d c) — l
Nee(d.po) Z o N, 09 M)

p— Np(y: | 0,c) + Mn(y:)
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Information criterion for NCE (general case)

Xi,..., Xy ~q(z), Yi,...,Yy~n(y), M/N-—v

Theorem 1
The quantity

NCIC; =Ndxcr(§,p) + tr(1J1)

is an approximately unbiased estimator of NE, ,[dncr(q, D)]:

Ew,y[NCIcl] = NEw,y[dNCE(Qaﬁ)] +o(1)

@ proof: asymptotics for stratified sampling (Wooldridge, 2001)
» two strata: data (size N) and noise (size M)
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Information criterion for NCE (well-specified case)

7(2)?

S Y
“NrMP

N+

Theorem 2
If the model is well-specified (¢(z) = p(x | £*)), then the quantity

N M
1 . N
NCIC; =Ndycr(4,9) +m — ——— (Z b(z) + b(w))
N + M t=1 t=1

is an approximately unbiased estimator of NE, ,[dncr(g, D)]:

Ew,y[NCICZ] = NEw,y[dNCE(%ﬁ)] +o(1)

@ easier to compute than NCIC,
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Bias correction in NCIC

@ non-normalized model (m = 3 parameters)

p(z | 0,c) = exp(f12° + Oz + c)

@ data (N =10%): (1 —¢€) - N(0,1) + ¢ - N(0, 10) (Gaussian
mixture)
» When ¢ = 0, the model is well-specified.

@ noise (M = 10%): N(0,1)
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Bias correction in NCIC

@ true bias

B = NEa:,y [d\NCE(é\NCE):I - NEz,y [dNCE(qaﬁ)]

@ bias estimate for NCIC; and NCIC,

A

Bl = —tr(fj_l),
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Bias correction in NCIC

@ When € = 0 (well-specified case), B ~ —(m — 1) = —2 and
both E, ,[B1] and E, ,[B] are close to this value.

@ When ¢ > 0 (mis-specified case), B and Ez,y[B’l] coincide well.

@ NCIC, has much smaller variance than NCIC;.

» Also, NCIC, is easier to compute than NCIC;.
» similar to TIC and AIC
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Information criterion for score matching
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Recall: Score matching and Fisher divergence

@ Fisher divergence

Dr(q,p) = g(q) + dsm(q,p)

dsi(a,) = [ (28, 1083(2) + V. ogp(o)|*) a(a)do
@ score matching estimator

1

N
Osn = argmln dsm (4, po) =N ; psm(z, 0)

psm(z,0) = 24, log B(z | ) + ||V log B(= | 0)|?
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Information criterion for score matching

1

N
I= N ZVGPSM(mt, 0)Vopsm(z:,0)"

t=1

0=0

N
.1
J= ~ ; V2psul(zy, 0)

=06

Theorem 3
The quantity

SMIC =Ndgp (4, p) + tr(1J 1)

is an approximately unbiased estimator of NE,[dsm (g, P)]:

E.[SMIC] = NE,[dsm(q, )] + o(1)
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Bias correction in SMIC

@ model: N(u,o?)

@ data (N =10%): (1 —¢€) - N(0,1) + ¢ - N(0, 10) (Gaussian
mixture)

@ true bias

B = NE, |dsu(fs)| — NEy[dswi(g, 9)]

@ bias estimate in SMIC

B = (i)
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Bias correction in SMIC

e Consistent with Theorem 3, B and E, ,[B] coincide quite well.
» The bias is larger than NCE.

4
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Applications
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Truncated Gaussian graphical model
truncated Gaussian graphical model (Lin et al., 2016)

1
p(z | X) ox exp (—ixTE_lw) , TER:

@ G = (V, E): undirected graph with V' = {1,--- ,d}
@ X0, (X1, =0if (4,7) ¢ E (no edge between 7 and j)

@ The normalization constant is computationally intractable.

@ Lin et al. (2016) estimated this model by [;-regularized score
matching.
» equivalent to LASSO mathematically
» application: RNAseq data




Edge selection performance

0

o2 0
0.55
0.55 1

@ counts of selection of each edge over 100 simulations
» NCIC; / NCIC, / SMIC

N =M =100
o'? (1,2) (1,3) (2,3)
0.2 | 26/20/37 | 22/17/30 | 45/39/58
0.3 | 38/27/44 | 20/19/25 | 60/59/71
0.5 | 56/49/62 | 23/17/33 | 42/39/62
N = M = 1000
ol? (1,2) (1,3) 2,3)
0.2 | 63/59/59 | 14/13/18 | 100/100/100
0.3 | 88/88/89 | 20/15/18 | 100/99/100
0.5 | 97/96/98 | 15/14/22 99/99/99
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Application to RNAseq data

@ RNAseq data for 40 genes
» used in Linetal. (2016)

@ SMIC w.r.t. edge counts
» left: truncated GGM, right: log-GGM
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@ Log-GGM has better fit to RNAseq data in this case.
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Overcomplete independent component analysis (ICA)

energy-based overcomplete ICA model (Teh et al., 2004)

p(z) o< exp (Z G(wax)> , G(u) = —[ul

b=1

@ data (N =5 x 10%): 8 x 8 image patches from natural images
» analyzed in Hyvarinen (2005) with score matching
@ noise (M = 5 x 10*): Gaussian with the same mean and
covariance as data

@ We select the number of filters B by minimizing NCICs.
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Data
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Model selection result

@ NCIGC, takes minimum at B = 118.
» Hyvarinen (2005) set B = 200.

%108
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Filters

@ estimated filters w, when B = 118

@ They respond to localized patterns (like V1 neurons).
» similar to the filters obtained in Hyvarinen (2005).
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Directional data analysis
Bivariate von Mises distribution (Singh et al., 2002)
p(z1,z2 | 0) xexp(ky cos(zy — p1) + K2 cos(zg — p2)
+ A sin(zy — p1) sin(zy — o)), (z1,22) € [0,2m)?

e 0= (K,l,li',g,ﬂl,ug,Alz) with K1 > 0, Ko > 0, K1, ta € [0,27‘(’)

@ The normalization constant is computationally intractable
(infinite sum of Bessel functions)

@ daily wind direction at Tokyo in 2018, 00:00 (z;) & 12:00 (x2)
@ NCIC comparison (—1941 < —1919) implies that x; and x5 are
dependent (A12 # 0)

6
5
4

<3

2
1
o
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Summary

@ We developed information criteria for non-normalized models

estimated by NCE or score matching.

MLE KL divergence AIC, TIC
score matching | Fisher divergence SMIC
NCE Bregman divergence | NCIC

@ By using these criteria, we can select the appropriate

non-normalized model in a data-driven manner.

@ paper: M., Uehara and Hyvarinen. Journal of Machine Learning

Research, 2021.
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