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Abstract
Akaike information criterion (AIC) enables data-driven selection
from normalized models.

AIC = −2 log p(x | θ̂) + 2k

▶ image from Google (Nov 5, 2017; Akaike’s 90th birthday)

We develop information criteria for non-normalized models.

MLE Kullback–Leibler divergence AIC, TIC
score matching Fisher divergence SMIC

NCE Bregman divergence NCIC
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Non-normalized models

p(x | θ) = 1
Z(θ) p̃(x | θ)

Z(θ) =
∫

p̃(x | θ)dx

Some statistical models are defined by p̃(x | θ) and the
normalization constant Z(θ) is computationally intractable

▶ e.g. Markov random field, distribution on manifolds

also known as "energy-based model" in machine learning

p̃(x | θ) = exp(−E(x | θ))
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Estimation methods for non-normalized models

p(x | θ) = 1
Z(θ) p̃(x | θ)

Z(θ) =
∫

p̃(x | θ)dx

estimate θ from x1, . . . , xN ∼ p(x | θ)

MLE is computationally intensive for non-normalized models..

Several methods have been developed that do not require
computation of Z(θ).

▶ pseudo-likelihood (Besag, 1974)
▶ contrastive divergence (Hinton, 2002)
▶ score matching (Hyvärinen, 2005)
▶ noise contrastive estimation (Gutmann and Hyvärinen, 2012)
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Divergence viewpoint
divergence (“distance" between probability distributions)

D(q, p) ≥ 0, D(q, p) = 0 ⇔ q = p

empirical distribution

q̂(x) = 1
N

n∑
t=1

δ(x− xt)

projection estimator

θ̂D = argmin
θ

D(q̂, pθ)

MLE Kullback–Leibler divergence
score matching Fisher divergence

NCE Bregman divergence
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MLE = KL projection

Maximum likelihood estimator (MLE)

θ̂MLE = argmax
θ

N∑
t=1

log p(xt | θ)

Kullback-Leibler divergence

DKL(q, pθ) =
∫

q(z) log q(z)
p(z | θ)dz

MLE = KL projection

θ̂MLE = argmin
θ

DKL(q̂, pθ)

6 / 42



Score matching
(Hyvärinen, 2005)
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Score function

q(x): probability density on Rd

score function

∇x log q(x) =
(

∂

∂x1
log q(x), . . . , ∂

∂xd
log q(x)

)

Important: score function does not involve Z(θ) !!

p(x | θ) = 1
Z(θ) p̃(x | θ)

∇x log p(x | θ) = ∇x log p̃(x | θ)
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Fisher divergence

Fisher divergence = L2 distance between score functions

DF(q, p) =
∫

∥∇x log q(x)−∇x log p(x)∥2 q(x)dx

By using integration by parts in Rd,

DF(q, p) = g(q) + dSM(q, p)

dSM(q, p) =
∫ (

2∆x log p(x) + ∥∇x log p(x)∥2
)
q(x)dx
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Score matching

Fisher discrepancy from empirical distribution

dSM(q̂, pθ) =
1
N

N∑
t=1

(
2∆x log p̃(xt | θ) + ∥∇x log p̃(xt | θ)∥2

)

Important: dSM(q̂, pθ) does not involve Z(θ) !!

score matching estimator

θ̂SM = argmin
θ

dSM(q̂, pθ)

This estimator has consistency and asymptotic normality under
mild regularity conditions (Hyvärinen, 2005).
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Noise contrastive estimation
(Gutmann and Hyvärinen, 2012)
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Noise contrastive estimation (NCE)

log p(x | θ, c) := log p̃(x | θ) + c, c = − logZ(θ)

NCE estimates θ and c simultaneously.

NCE is based on discrimination between data and noise.
▶ similar in spirit to Generative Adversarial Network (GAN)

In addition to data x1, · · · , xN ∼ p(x | θ), we generate noise
samples y1, · · · , yM from a noise distribution n(y).

▶ should be difficult to discriminate from data
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Noise contrastive estimation (NCE)
The estimate is defined to discriminate between data and noise
as accurately as possible.

(θ̂NCE, ĉNCE) = argmin
θ,c

d̂NCE(θ, c)

d̂NCE(θ, c) =−
N∑
t=1

log Np(xt | θ, c)
Np(xt | θ, c) +Mn(xt)

−
M∑
t=1

log Mn(yt)
Np(yt | θ, c) +Mn(yt)

d̂NCE: negative log-likelihood of the logistic regression classifier
This estimator has consistency and asymptotic normality under
mild regularity conditions (Gutmann and Hyvärinen, 2012).
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Bregman divergence induced by NCE

Gutmann and Hirayama (2011): NCE can be interpreted as
projection with respect to a Bregman divergence

DNCE(q, p) =
∫

df

(
q(x)
n(x) ,

p(x)
n(x)

)
n(x)dx

df (a, b) = f(a)− f(b)− f ′(b)(a− b)

f(x) = x log x−
(
M

N
+ x

)
log
(
1 + N

M
x

)
Pihlaja et al. (2010) compared other choices of f in simulation
Uehara et al. (2018): this f minimizes the asymptotic variance
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Akaike Information Criterion (AIC) and
Takeuchi Information Criterion (TIC)
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Setting

X1, · · · , XN ∼ q(x), N → ∞

candidate model: p(x | θ)
Maximum Likelihood Estimator (MLE)

θ̂MLE(xN) = argmax
θ

N∑
t=1

log p(xt | θ)

We want to select a model with smaller KL divergence from the
true distribution

DKL(q(z), p(z | θ̂MLE(xN)))
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KL discrepancy and bias correction
Kullback–Leibler discrepancy

dKL(q, θ̂MLE(xN)) = −Eq[log p(z | θ̂MLE(xN))]

is equivalent to Kullback–Leibler divergence (up to constant)

DKL(q, θ̂MLE(xN)) = Eq[log q(z)] + dKL(q, θ̂MLE(xN))

→ We estimate expected KL discrepancy for model selection

The estimate

dKL(q̂, θ̂MLE(xN)) = − 1
N

N∑
t=1

log p(xt | θ̂MLE(xN))

has negative bias becuase it uses data twice.

→ We correct its bias
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Akaike Information Criterion

Akaike Information Criterion (AIC; Akaike, 1974)

AIC = −2
N∑
t=1

log p(xt | θ̂MLE(x)) + 2 · dim(θ)

▶ second term: bias correction

Proposition
If the model is well-specified (q(x) = p(x | θ∗)), then AIC is an
approximately unbiased estimator of the expected KL discrepancy:

Eθ[AIC] = −2NEθ[log p(z | θ̂MLE(x))] +O(N−1)

18 / 42



Takeuchi Information Criterion (TIC)
How about mis-specified case?
Takeuchi Information Criterion (TIC)

TIC = −2
N∑
t=1

log p(xt | θ̂MLE(x)) + 2tr(Î Ĵ−1)

Îij =
1
N

N∑
t=1

∂

∂θi
log p(xt | θ)

∂

∂θj
log p(xt | θ)

∣∣∣∣∣
θ=θ̂MLE(xN )

Ĵij = − 1
N

N∑
t=1

∂2

∂θi∂θj
log p(xt | θ)

∣∣∣∣∣
θ=θ̂MLE(xN )

Proposition

Eq[TIC] = −2NEq[log p(z | θ̂MLE(x))] + o(1)
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Information criterion for NCE
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Recall: NCE and Bregman divergence

Bregman divergence

DNCE(q, p) = g(q) + dNCE(q, p)

NCE

(θ̂NCE, ĉNCE) = argmin
θ,c

dNCE(q̂, pθ,c)

dNCE(q̂, pθ,c) =−
N∑
t=1

log Np(xt | θ, c)
Np(xt | θ, c) +Mn(xt)

−
M∑
t=1

log Mn(yt)
Np(yt | θ, c) +Mn(yt)
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Information criterion for NCE (general case)

X1, . . . , XN ∼ q(x), Y1, . . . , YM ∼ n(y), M/N → ν

Theorem 1
The quantity

NCIC1 =NdNCE(q̂, p̂) + tr(Î Ĵ−1)

is an approximately unbiased estimator of NEx,y[dNCE(q, p̂)]:

Ex,y[NCIC1] = NEx,y[dNCE(q, p̂)] + o(1)

proof: asymptotics for stratified sampling (Wooldridge, 2001)
▶ two strata: data (size N ) and noise (size M )
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Information criterion for NCE (well-specified case)

b̂(z) = p̂(z)n(z)
r̂(z)2 , r̂(z) = N

N +M
p̂(z) + M

N +M
n(z)

Theorem 2
If the model is well-specified (q(x) = p(x | ξ∗)), then the quantity

NCIC2 =NdNCE(q̂, p̂) +m− 1
N +M

(
N∑
t=1

b̂(xt) +
M∑
t=1

b̂(yt)
)

is an approximately unbiased estimator of NEx,y[dNCE(q, p̂)]:

Ex,y[NCIC2] = NEx,y[dNCE(q, p̂)] + o(1)

easier to compute than NCIC1
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Bias correction in NCIC

non-normalized model (m = 3 parameters)

p(x | θ, c) = exp(θ1x2 + θ2x+ c)

data (N = 103): (1− ε) · N(0, 1) + ε · N(0, 10) (Gaussian
mixture)

▶ When ε = 0, the model is well-specified.

noise (M = 103): N(0, 1)
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Bias correction in NCIC
true bias

B = NEx,y

[
d̂NCE(ξ̂NCE)

]
−NEx,y[dNCE(q, p̂)]

bias estimate for NCIC1 and NCIC2

B̂1 = −tr(Î Ĵ−1), B̂2 = −m+ 1
N +M

(
N∑
t=1

b̂(xt) +
M∑
t=1

b̂(yt)
)
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Bias correction in NCIC
When ε = 0 (well-specified case), B ≈ −(m− 1) = −2 and
both Ex,y[B̂1] and Ex,y[B̂2] are close to this value.
When ε > 0 (mis-specified case), B and Ex,y[B̂1] coincide well.
NCIC2 has much smaller variance than NCIC1.

▶ Also, NCIC2 is easier to compute than NCIC1.
▶ similar to TIC and AIC
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Information criterion for score matching
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Recall: Score matching and Fisher divergence

Fisher divergence

DF(q, p) = g(q) + dSM(q, p)

dSM(q, p) =
∫ (

2∆x log p(x) + ∥∇x log p(x)∥2
)
q(x)dx

score matching estimator

θ̂SM = argmin
θ

dSM(q̂, pθ) =
1
N

N∑
t=1

ρSM(xt, θ)

ρSM(x, θ) = 2∆x log p̃(x | θ) + ∥∇x log p̃(x | θ)∥2
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Information criterion for score matching

Î = 1
N

N∑
t=1

∇θρSM(xt, θ)∇θρSM(xt, θ)⊤
∣∣∣∣∣
θ=θ̂

Ĵ = 1
N

N∑
t=1

∇2
θρSM(xt, θ)

∣∣∣∣∣
θ=θ̂

Theorem 3
The quantity

SMIC =NdSM(q̂, p̂) + tr(Î Ĵ−1)

is an approximately unbiased estimator of NEq[dSM(q, p̂)]:

Ex[SMIC] = NEx[dSM(q, p̂)] + o(1)
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Bias correction in SMIC

model: N(µ, σ2)

data (N = 103): (1− ε) · N(0, 1) + ε · N(0, 10) (Gaussian
mixture)

true bias

B = NEq

[
d̂SM(θ̂SM)

]
−NEq[dSM(q, p̂)]

bias estimate in SMIC

B̂ = −tr(Î Ĵ−1)
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Bias correction in SMIC

Consistent with Theorem 3, B and Ex,y[B̂] coincide quite well.
▶ The bias is larger than NCE.
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Applications
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Truncated Gaussian graphical model
truncated Gaussian graphical model (Lin et al., 2016)

p(x | Σ) ∝ exp
(
−1
2x

⊤Σ−1x

)
, x ∈ Rd

+

G = (V,E): undirected graph with V = {1, · · · , d}
Σ ≻ 0, (Σ−1)ij = 0 if (i, j) < E (no edge between i and j)

The normalization constant is computationally intractable.

Lin et al. (2016) estimated this model by l1-regularized score
matching.

▶ equivalent to LASSO mathematically
▶ application: RNAseq data
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Edge selection performance

Σ−1 =

 1 σ12 0
σ12 1 0.55
0 0.55 1


counts of selection of each edge over 100 simulations

▶ NCIC1 / NCIC2 / SMIC
N = M = 100

σ12 (1,2) (1,3) (2,3)
0.2 26/20/37 22/17/30 45/39/58
0.3 38/27/44 20/19/25 60/59/71
0.5 56/49/62 23/17/33 42/39/62

N = M = 1000
σ12 (1,2) (1,3) (2,3)
0.2 63/59/59 14/13/18 100/100/100
0.3 88/88/89 20/15/18 100/99/100
0.5 97/96/98 15/14/22 99/99/99

(1, 2) and (2, 3) are selected more frequently than (1, 3).
The frequency of selecting (1, 2) increases with σ12.
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Application to RNAseq data
RNAseq data for 40 genes

▶ used in Lin et al. (2016)

SMIC w.r.t. edge counts
▶ left: truncated GGM, right: log-GGM

Log-GGM has better fit to RNAseq data in this case.
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Overcomplete independent component analysis (ICA)

energy-based overcomplete ICA model (Teh et al., 2004)

p(x) ∝ exp
(

B∑
b=1

G(w⊤
b x)
)
, G(u) = −|u|

data (N = 5× 104): 8 × 8 image patches from natural images
▶ analyzed in Hyvärinen (2005) with score matching

noise (M = 5× 104): Gaussian with the same mean and
covariance as data

We select the number of filters B by minimizing NCIC2.
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Data
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Model selection result

NCIC2 takes minimum at B = 118.
▶ Hyvärinen (2005) set B = 200.
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Filters
estimated filters wb when B = 118

They respond to localized patterns (like V1 neurons).
▶ similar to the filters obtained in Hyvärinen (2005).
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Directional data analysis
Bivariate von Mises distribution (Singh et al., 2002)

p(x1, x2 | θ) ∝ exp(κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)
+ λ12 sin(x1 − µ1) sin(x2 − µ2)), (x1, x2) ∈ [0, 2π)2

θ = (κ1, κ2, µ1, µ2, λ12) with κ1 ≥ 0, κ2 ≥ 0, µ1, µ2 ∈ [0, 2π)
The normalization constant is computationally intractable
(infinite sum of Bessel functions)

daily wind direction at Tokyo in 2018, 00:00 (x1) & 12:00 (x2)
NCIC comparison (−1941 < −1919) implies that x1 and x2 are
dependent (λ12 , 0)
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Summary

We developed information criteria for non-normalized models
estimated by NCE or score matching.

MLE KL divergence AIC, TIC
score matching Fisher divergence SMIC

NCE Bregman divergence NCIC

By using these criteria, we can select the appropriate
non-normalized model in a data-driven manner.

paper: M., Uehara and Hyvärinen. Journal of Machine Learning
Research, 2021.
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