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Abstract

Stein (1974)
When X ∼ Nn(µ, In) (n ≥ 3), Bayes estimator with a superharmonic
prior π(µ) is minimax under quadratic loss:

∆π :=
n∑

a=1

∂2π

∂µ2
a
≤ 0 ⇒ E‖µ̂π(x) − µ‖2 ≤ n

This study (M. and Strawderman, Biometrika 2021+)
When X ∼ Nn,p(M, In, Ip) (n ≥ p + 2), Bayes estimator with a matrix
superharmonic prior is minimax under matrix quadratic loss:

∆̃π :=

 n∑
a=1

∂2π

∂Mai∂Ma j


i j

� O

⇒ E(M̂π(X) − M)>(M̂π(X) − M) � nIp
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Stein’s paradox

X ∼ Nn(µ, In)

estimate µ based on X under quadratic loss ‖µ̂ − µ‖2

Maximum likelihood estimator µ̂MLE(x) = x is minimax.

Theorem (Stein, 1956)
When n ≥ 3, µ̂MLE(x) = x is inadmissible.

Shrinkage estimators dominate µ̂MLE.
e.g. James–Stein estimator (James and Stein, 1961)

µ̂JS(x) =

(
1 −

n − 2
‖x‖2

)
x

E‖µ̂JS(x) − µ‖2 ≤ E‖µ̂MLE(x) − µ‖2 = n

JS shrinks x toward the origin.
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Risk comparison
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quadratic risk E‖µ̂ − µ‖2 (n = 10)

MLE
James–Stein

JS attains large risk reduction when µ is close to the origin
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superharmonic prior⇒ minimax
Bayes estimator of µ with prior π(µ) (posterior mean)

µ̂π(x) = Eπ[µ | x] =

∫
µπ(µ | x)dµ

superharmonic prior

∆π(µ) =

n∑
a=1

∂2

∂µ2
a
π(µ) ≤ 0

Theorem (Stein, 1974)
The Bayes estimator with a superharmonic prior is minimax.

e.g. Stein’s prior (n ≥ 3)

πS(µ) = ‖µ‖2−n

Bayes estimator with πS shrinks toward the origin like JS.
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Shrinkage estimation of normal mean matrix

X ∼ Nn,p(M, In, Ip) (Xai ∼ N(Mai, 1))

estimate M based on X under Frobenius loss

‖M̂ − M‖2F =

n∑
a=1

p∑
i=1

(M̂ai − Mai)2

Efron–Morris estimator (= James–Stein estimator when p = 1)

M̂EM(X) = X
(
Ip − (n − p − 1)(X>X)−1

)
Theorem (Efron and Morris, 1972)
When n ≥ p + 2, M̂EM is minimax and dominates M̂MLE(X) = X.

Stein (1974): M̂EM shrinks singular values separately.

σi(M̂EM) =

(
1 −

n − p − 1
σi(X)2

)
σi(X)
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Risk function (rank 2)
n = 10, p = 3, σ1(M) = 20, σ3(M) = 0
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M̂EM works well when σ2(M) is small, even if σ1(M) is large.
I M̂JS works well if ‖M‖2F = σ1(M)2 + σ2(M)2 + σ3(M)2 is small.
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Risk function (rank 1)
n = 10, p = 3, σ2(M) = σ3(M) = 0
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M̂EM has constant risk reduction even if σ1(M) is large.
Therefore, M̂EM works well when M has low rank.
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Singular value shrinkage prior (M. and Komaki, 2015)

πSVS(M) = det(M>M)−(n−p−1)/2 =

p∏
i=1

σi(M)−(n−p−1)

puts more weight on matrices with smaller singular values
→ shrinks singular values separately
When p = 1, πSVS coincides with Stein’s prior πS(µ) = ‖µ‖2−n.

Theorem (M. and Komaki, Biometrika 2015)
When n ≥ p + 2, πSVS is superharmonic:

∆πSVS =

n∑
a=1

p∑
i=1

∂2πSVS

∂M2
ai

≤ 0.

Bayes estimator with πSVS is minimax under Frobenius loss.
I similar behavior to EM
I works well when M has (approximately) low rank
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Summary (so far)

vector matrix

James–Stein estimator

µ̂JS =
(
1 − n−2

‖x‖2

)
x

Efron–Morris estimator

M̂EM = X
(
Ip − (n − p − 1)(X>X)−1

)
Stein’s prior

πS(µ) = ‖µ‖−(n−2)

singular value shrinkage prior

πSVS(M) = det(M>M)−(n−p−1)/2

note: JS and EM are not (generalized) Bayes estimators.
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Estimation under matrix quadratic loss

X ∼ Nn,p(M, In, Ip) (Xai ∼ N(Mai, 1))

estimate M based on X under matrix quadratic loss

L(M, M̂) = (M̂ − M)>(M̂ − M) ∈ Rp×p

risk function

R(M, M̂) = EM[L(M, M̂(X))] ∈ Rp×p

We compare R(M, M̂) in the Löwner order �
I A � B⇔ B − A is positive semidefinite
I If R(M, M̂1) � R(M, M̂2), then EM‖M̂1c−Mc‖2 ≤ EM‖M̂2c−Mc‖2

for every c

cf. multivariate linear regression
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Unbiased risk estimate & minimaxity of EM
matrix divergence

(d̃iv g(X))i j =

n∑
a=1

∂

∂Xai
ga j(X)

Theorem
The matrix quadratic risk of M̂ = X + g(X) is given by

R(M, M̂) = nIp + EM[d̃iv g(X) + (d̃iv g(X))> + g(X)>g(X)]

Theorem
When n − p − 1 > 0, the Efron–Morris estimator is minimax under
the matrix quadratic loss:

R(M, M̂EM) = nIp − (n − p − 1)2EM[(X>X)−1] � nIp
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Matrix superharmonicity
“sphere” with center X ∈ Rn×p and “radius” ρ ∈ Rp

S X,ρ = {X + eρ> | e ∈ Rn, ‖e‖ = 1}

average value of f on S X,ρ

L( f : X, ρ) =
1

Ωn

∫
S 0,1

f (X + eρ>)ds(e)

Definition
An extended real-valued function f : Rn×p → R ∪ {∞} is matrix
superharmonic if

1 f is lower semicontinuous

2 f . ∞

3 L( f : X, ρ) ≤ f (X) for every X ∈ Rn×p and ρ ∈ Rp
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Matrix superharmonic⇒ superharmonic

Lemma
If a function f : Rn×p → R ∪ {∞} is matrix superharmonic, then
f ◦ vec−1 is superharmonic.

Proof: For every X ∈ Rn×p and r > 0,

L( f ◦ vec−1 : vec(X), r) =
1

Ωprp−1

∫
S 0,r

L( f : X, ρ)ds(ρ) ≤ f (X)

The converse does not hold when p ≥ 2.
I e.g. f (X) = ‖X‖2−np

F
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Characterization by matrix Laplacian

Matrix superharmonicity is characterized by a matrix version of
the Laplacian.

Definition
For a C2 function f : Rn×p → R, its matrix Laplacian
∆̃ f : Rn×p → Rp×p is defined as

(∆̃ f (X))i j =

n∑
a=1

∂2

∂Xai∂Xa j
f (X)

Theorem
A C2 function f : Rn×p → R is matrix superharmonic if and only if its
matrix Laplacian is negative semidefinite ∆̃ f (X) � O for every X.

Proof: Green’s theorem
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matrix superharmonic prior⇒ minimax

M̂π(X) = Eπ[M | X] = X + ∇̃ log mπ(X)

Theorem
If
√

mπ(X) is matrix superharmonic, then M̂π is minimax under the
matrix quadratic loss.

Proof: by using the unbiased estimate of risk,

R(M, M̂π) = nIp + 4EM

 ∆̃
√

mπ(X)
√

mπ(X)


Theorem
If π(M) is matrix superharmonic, then

√
mπ(X) is also matrix

superharmonic and M̂π is minimax under the matrix quadratic loss.

When p = 1, it reduces to the classical result by Stein (1974).
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A class of matrix superharmonic priors

improper matrix t-prior

πα,β(M) = det(M>M + βIp)−(α+n+p−1)/2

Theorem
If −n − p + 1 ≤ α ≤ −2p and β ≥ 0, then πα,β(M) is matrix
superharmonic and the generalized Bayes estimator with respect to
πα,β(M) is minimax under the matrix quadratic loss.

When p = 1, it reduces to the result by Faith (1993) on
(improper) multivariate t-priors.
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Matrix superharmonicity of πSVS

When α = −2p and β = 0, the prior πα,β(M) coincides with the
singular value shrinkage prior

πSVS(M) = det(M>M)−(n−p−1)/2

Corollary
When n − p − 1 > 0, πSVS(M) is matrix superharmonic and the
generalized Bayes estimator with respect to πSVS is minimax under
the matrix quadratic loss.

The matrix superharmonicity of πSVS is strongly concentrated
on the space of low rank matrices.

Corollary
If M has full-rank, then ∆̃πSVS(M) = O.
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Simulation setting

We denote the i-th singular value of M by σi.
I σ1 ≥ σ2 ≥ · · · ≥ σp

We focus on the eigenvalues λ1 ≥ · · · ≥ λp of the matrix
quadratic risk R(M, M̂).

I Since R(M, M̂) = nIp for MLE M̂ = X, an estimator is minimax if
and only if λ1 ≤ n for every M.

Bayes estimator with πSVS(M) = det(M>M)−(n−p−1)/2

Bayes estimator with Stein’s prior πS(M) = ‖M‖2−np
F

Efron–Morris estimator M̂EM = X(I − (n − p − 1)(X>X)−1)
I almost the same risk with Bayes estimators with πSVS

James–Stein estimator M̂JS = (1 − (np − 2)/‖X‖2F)X
I almost the same risk with Bayes estimators with πS
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Simulation results (Figure 1)
eigenvalues of Bayes estimators (n = 5, p = 3, σ1 = 10, σ3 = 0)
left: πSVS, right: πS
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For πSVS, all eigenvalues do not exceed n = 5, which indicates
the minimaxity.

I λ1 and λ3 are almost constant with values λ1 ≈ 5 and λ3 ≈ 4.
I λ2 increases from 4 to 5 with σ2.
I These are understood from the fact that πSVS shrinks each

singular value separately. 20 / 24



Simulation results (Figure 1)
eigenvalues of Bayes estimators (n = 5, p = 3, σ1 = 10, σ3 = 0)
left: πSVS, right: πS
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For πS, λ1 ≥ n = 5 when σ2 ≤ 8→ not minimax.

I However, since this estimatot is minimax under the Frobenius
loss, λ1 + λ2 + λ3 ≤ np = 15.

I cf. James–Stein estimator is not minimax componentwise, even
though it is minimax under the quadratic loss for the whole
vector (Lehmann and Casella, 2006). 21 / 24



Simulation results (Figure 2)

eigenvalues (n = 5, p = 3, σ2 = σ3 = 0)
left: πSVS, right: πS
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For πSVS, both λ2 and λ3 are almost constant around 4

→ πSVS works particularly well when M has low rank
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Simulation results (Figure 3)

eigenvalues (n = 100, p = 20, σi = (6 − i)/5 · σ1 (i = 2, . . . , 5),
σ6 = · · · = σ20 = 0)
left: M̂EM. right: M̂JS
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The advantage of M̂EM to the low-rank setting is more
pronounced in higher dimensions.

I λ6 ≈ · · · ≈ λ20 ≈ 20
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Summary

X ∼ Nn,p(M, In, Ip)

The Bayes estimator with a matrix superharmonic prior is
minimax under matrix quadratic loss:

∆̃π :=

 n∑
a=1

∂2π

∂Mai∂Ma j


i j

� O

⇒ E(M̂π(X) − M)>(M̂π(X) − M) � nIp

The matrix t-prior

πα,β(M) = det(M>M + βIp)−(α+n+p−1)/2

is matrix superharmonic when −n − p + 1 ≤ α ≤ −2p and β ≥ 0.
Matrix superharmonic priors work well for low-rank matrices.
paper: M. and Strawderman, Biometrika 2021+
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