# Matrix superharmonic priors for Bayes estimation under matrix quadratic loss 

Takeru Matsuda (RIKEN Center for Brain Science)
William E. Strawderman (Rutgers University)

## Abstract

## Stein (1974)

When $X \sim \mathrm{~N}_{n}\left(\mu, I_{n}\right)(n \geq 3)$, Bayes estimator with a superharmonic prior $\pi(\mu)$ is minimax under quadratic loss:

$$
\Delta \pi:=\sum_{a=1}^{n} \frac{\partial^{2} \pi}{\partial \mu_{a}^{2}} \leq 0 \quad \Rightarrow \quad \mathrm{E}\left\|\hat{\mu}^{\pi}(x)-\mu\right\|^{2} \leq n
$$

## This study (M. and Strawderman, Biometrika 2021+)

When $X \sim \mathrm{~N}_{n, p}\left(M, I_{n}, I_{p}\right)(n \geq p+2)$, Bayes estimator with a matrix superharmonic prior is minimax under matrix quadratic loss:

$$
\begin{gathered}
\widetilde{\Delta} \pi:=\left(\sum_{a=1}^{n} \frac{\partial^{2} \pi}{\partial M_{a i} \partial M_{a j}}\right)_{i j} \leq O \\
\Rightarrow \quad \mathrm{E}\left(\hat{M}^{\pi}(X)-M\right)^{\top}\left(\hat{M}^{\pi}(X)-M\right) \leq n I_{p}
\end{gathered}
$$

## Stein's paradox

$$
X \sim \mathrm{~N}_{n}\left(\mu, I_{n}\right)
$$

- estimate $\mu$ based on $X$ under quadratic loss $\|\hat{\mu}-\mu\|^{2}$
- Maximum likelihood estimator $\hat{\mu}_{\text {MLE }}(x)=x$ is minimax.


## Theorem (Stein, 1956)

When $n \geq 3, \hat{\mu}_{\text {MLE }}(x)=x$ is inadmissible.

- Shrinkage estimators dominate $\hat{\mu}_{\text {MLE }}$.
- e.g. James-Stein estimator (James and Stein, 1961)

$$
\hat{\mu}_{\mathrm{JS}}(x)=\left(1-\frac{n-2}{\|x\|^{2}}\right) x
$$

$$
\mathrm{E}\left\|\hat{\mu}_{\mathrm{JS}}(x)-\mu\right\|^{2} \leq \mathrm{E}\left\|\hat{\mu}_{\mathrm{MLE}}(x)-\mu\right\|^{2}=n
$$

- JS shrinks $x$ toward the origin.


## Risk comparison

quadratic risk $\mathrm{E}\|\hat{\mu}-\mu\|^{2}(n=10)$


- JS attains large risk reduction when $\mu$ is close to the origin


## superharmonic prior $\Rightarrow$ minimax

- Bayes estimator of $\mu$ with prior $\pi(\mu)$ (posterior mean)

$$
\hat{\mu}^{\pi}(x)=\mathrm{E}_{\pi}[\mu \mid x]=\int \mu \pi(\mu \mid x) \mathrm{d} \mu
$$

- superharmonic prior

$$
\Delta \pi(\mu)=\sum_{a=1}^{n} \frac{\partial^{2}}{\partial \mu_{a}^{2}} \pi(\mu) \leq 0
$$

## Theorem (Stein, 1974)

The Bayes estimator with a superharmonic prior is minimax.

- e.g. Stein's prior ( $n \geq 3$ )

$$
\pi_{\mathrm{S}}(\mu)=\|\mu\|^{2-n}
$$

- Bayes estimator with $\pi_{\mathrm{S}}$ shrinks toward the origin like JS.


## Shrinkage estimation of normal mean matrix

$$
X \sim \mathrm{~N}_{n, p}\left(M, I_{n}, I_{p}\right) \quad\left(X_{a i} \sim \mathrm{~N}\left(M_{a i}, 1\right)\right)
$$

- estimate $M$ based on $X$ under Frobenius loss

$$
\|\hat{M}-M\|_{\mathrm{F}}^{2}=\sum_{a=1}^{n} \sum_{i=1}^{p}\left(\hat{M}_{a i}-M_{a i}\right)^{2}
$$

- Efron-Morris estimator (= James-Stein estimator when $p=1$ )

$$
\hat{M}_{\mathrm{EM}}(X)=X\left(I_{p}-(n-p-1)\left(X^{\top} X\right)^{-1}\right)
$$

## Theorem (Efron and Morris, 1972)

When $n \geq p+2, \hat{M}_{\mathrm{EM}}$ is minimax and dominates $\hat{M}_{\mathrm{MLE}}(X)=X$.

- Stein (1974): $\hat{M}_{\mathrm{EM}}$ shrinks singular values separately.

$$
\sigma_{i}\left(\hat{M}_{\mathrm{EM}}\right)=\left(1-\frac{n-p-1}{\sigma_{i}(X)^{2}}\right) \sigma_{i}(X)
$$

## Risk function (rank 2)

- $n=10, p=3, \sigma_{1}(M)=20, \sigma_{3}(M)=0$

- $\hat{M}_{\mathrm{EM}}$ works well when $\sigma_{2}(M)$ is small, even if $\sigma_{1}(M)$ is large.
- $\hat{M}_{\mathrm{JS}}$ works well if $\|M\|_{\mathrm{F}}^{2}=\sigma_{1}(M)^{2}+\sigma_{2}(M)^{2}+\sigma_{3}(M)^{2}$ is small.


## Risk function (rank 1)

- $n=10, p=3, \sigma_{2}(M)=\sigma_{3}(M)=0$

- $\hat{M}_{\mathrm{EM}}$ has constant risk reduction even if $\sigma_{1}(M)$ is large.
- Therefore, $\hat{M}_{\text {EM }}$ works well when $M$ has low rank.


## Singular value shrinkage prior (M. and Komaki, 2015)

$$
\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(n-p-1) / 2}=\prod_{i=1}^{p} \sigma_{i}(M)^{-(n-p-1)}
$$

- puts more weight on matrices with smaller singular values $\rightarrow$ shrinks singular values separately
- When $p=1, \pi_{\text {SVS }}$ coincides with Stein's prior $\pi_{\mathrm{S}}(\mu)=\|\mu\|^{2-n}$.


## Theorem (M. and Komaki, Biometrika 2015)

When $n \geq p+2, \pi_{\text {SVS }}$ is superharmonic:

$$
\Delta \pi_{\mathrm{SVS}}=\sum_{a=1}^{n} \sum_{i=1}^{p} \frac{\partial^{2} \pi_{\mathrm{SVS}}}{\partial M_{a i}^{2}} \leq 0
$$

- Bayes estimator with $\pi_{\text {SVS }}$ is minimax under Frobenius loss.
- similar behavior to EM
- works well when $M$ has (approximately) low rank


## Summary (so far)

| vector | matrix |
| :---: | :---: |
| James-Stein estimator | Efron-Morris estimator |
| $\hat{\mu}_{\mathrm{JS}}=\left(1-\frac{n-2}{\\|x\\|^{2}}\right) x$ | $\hat{M}_{\mathrm{EM}}=X\left(I_{p}-(n-p-1)\left(X^{\top} X\right)^{-1}\right)$ |
| Stein's prior | singular value shrinkage prior |
| $\pi_{\mathrm{S}}(\mu)=\\|\mu\\|^{-(n-2)}$ | $\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(n-p-1) / 2}$ |

- note: JS and EM are not (generalized) Bayes estimators.


## Estimation under matrix quadratic loss

$$
X \sim \mathrm{~N}_{n, p}\left(M, I_{n}, I_{p}\right) \quad\left(X_{a i} \sim \mathrm{~N}\left(M_{a i}, 1\right)\right)
$$

- estimate $M$ based on $X$ under matrix quadratic loss

$$
L(M, \hat{M})=(\hat{M}-M)^{\top}(\hat{M}-M) \in \mathbb{R}^{p \times p}
$$

- risk function

$$
R(M, \hat{M})=\mathrm{E}_{M}[L(M, \hat{M}(X))] \in \mathbb{R}^{p \times p}
$$

- We compare $R(M, \hat{M})$ in the Löwner order $\leq$
- $A \leq B \Leftrightarrow B-A$ is positive semidefinite
- If $R\left(M, \hat{M}_{1}\right) \leq R\left(M, \hat{M}_{2}\right)$, then $\mathrm{E}_{M}\left\|\hat{M}_{1} c-M c\right\|^{2} \leq \mathrm{E}_{M}\left\|\hat{M}_{2} c-M c\right\|^{2}$ for every $c$
- cf. multivariate linear regression


## Unbiased risk estimate \& minimaxity of EM

- matrix divergence

$$
(\widetilde{\operatorname{div}} g(X))_{i j}=\sum_{a=1}^{n} \frac{\partial}{\partial X_{a i}} g_{a j}(X)
$$

## Theorem

The matrix quadratic risk of $\hat{M}=X+g(X)$ is given by

$$
R(M, \hat{M})=n I_{p}+\mathrm{E}_{M}\left[\widetilde{\operatorname{div}} g(X)+(\widetilde{\operatorname{div}} g(X))^{\top}+g(X)^{\top} g(X)\right]
$$

## Theorem

When $n-p-1>0$, the Efron-Morris estimator is minimax under the matrix quadratic loss:

$$
R\left(M, \hat{M}_{\mathrm{EM}}\right)=n I_{p}-(n-p-1)^{2} \mathrm{E}_{M}\left[\left(X^{\top} X\right)^{-1}\right] \leq n I_{p}
$$

## Matrix superharmonicity

- "sphere" with center $X \in \mathbb{R}^{n \times p}$ and "radius" $\rho \in \mathbb{R}^{p}$

$$
S_{X, \rho}=\left\{X+e \rho^{\top} \mid e \in \mathbb{R}^{n},\|e\|=1\right\}
$$

- average value of $f$ on $S_{X, \rho}$

$$
L(f: X, \rho)=\frac{1}{\Omega_{n}} \int_{S_{0,1}} f\left(X+e \rho^{\top}\right) \mathrm{d} s(e)
$$

## Definition

An extended real-valued function $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R} \cup\{\infty\}$ is matrix superharmonic if
(1) $f$ is lower semicontinuous
(2) $f \not \equiv \infty$
(3) $L(f: X, \rho) \leq f(X)$ for every $X \in \mathbb{R}^{n \times p}$ and $\rho \in \mathbb{R}^{p}$

## Matrix superharmonic $\Rightarrow$ superharmonic

## Lemma

If a function $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R} \cup\{\infty\}$ is matrix superharmonic, then $f \circ \mathrm{vec}^{-1}$ is superharmonic.

- Proof: For every $X \in \mathbb{R}^{n \times p}$ and $r>0$,

$$
L\left(f \circ \operatorname{vec}^{-1}: \operatorname{vec}(X), r\right)=\frac{1}{\Omega_{p} r^{p-1}} \int_{S_{0, r}} L(f: X, \rho) \mathrm{d} s(\rho) \leq f(X)
$$

- The converse does not hold when $p \geq 2$.
- e.g. $f(X)=\|X\|_{\mathrm{F}}^{2-n p}$


## Characterization by matrix Laplacian

- Matrix superharmonicity is characterized by a matrix version of the Laplacian.


## Definition

For a $C^{2}$ function $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$, its matrix Laplacian
$\widetilde{\Delta} f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}^{p \times p}$ is defined as

$$
(\widetilde{\Delta} f(X))_{i j}=\sum_{a=1}^{n} \frac{\partial^{2}}{\partial X_{a i} \partial X_{a j}} f(X)
$$

## Theorem

A $C^{2}$ function $f: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$ is matrix superharmonic if and only if its matrix Laplacian is negative semidefinite $\Delta f(X) \leq O$ for every $X$.

- Proof: Green's theorem


## matrix superharmonic prior $\Rightarrow$ minimax

$$
\hat{M}^{\pi}(X)=\mathrm{E}_{\pi}[M \mid X]=X+\widetilde{\nabla} \log m_{\pi}(X)
$$

## Theorem

If $\sqrt{m_{\pi}(X)}$ is matrix superharmonic, then $\hat{M}^{\pi}$ is minimax under the matrix quadratic loss.

- Proof: by using the unbiased estimate of risk,

$$
R\left(M, \hat{M}^{\pi}\right)=n I_{p}+4 \mathrm{E}_{M}\left[\frac{\widetilde{\Delta} \sqrt{m_{\pi}(X)}}{\sqrt{m_{\pi}(X)}}\right]
$$

## Theorem

If $\pi(M)$ is matrix superharmonic, then $\sqrt{m_{\pi}(X)}$ is also matrix superharmonic and $\hat{M}^{\pi}$ is minimax under the matrix quadratic loss.

- When $p=1$, it reduces to the classical result by Stein (1974).


## A class of matrix superharmonic priors

- improper matrix t-prior

$$
\pi_{\alpha, \beta}(M)=\operatorname{det}\left(M^{\top} M+\beta I_{p}\right)^{-(\alpha+n+p-1) / 2}
$$

## Theorem

If $-n-p+1 \leq \alpha \leq-2 p$ and $\beta \geq 0$, then $\pi_{\alpha, \beta}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to $\pi_{\alpha, \beta}(M)$ is minimax under the matrix quadratic loss.

- When $p=1$, it reduces to the result by Faith (1993) on (improper) multivariate t-priors.


## Matrix superharmonicity of $\pi_{\text {SVS }}$

- When $\alpha=-2 p$ and $\beta=0$, the prior $\pi_{\alpha, \beta}(M)$ coincides with the singular value shrinkage prior

$$
\pi_{\mathrm{SVS}}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(n-p-1) / 2}
$$

## Corollary

When $n-p-1>0, \pi_{\mathrm{SVS}}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to $\pi_{\mathrm{svs}}$ is minimax under the matrix quadratic loss.

- The matrix superharmonicity of $\pi_{\text {svs }}$ is strongly concentrated on the space of low rank matrices.


## Corollary

If $M$ has full-rank, then $\widetilde{\Delta} \pi_{\mathrm{svs}}(M)=O$.

## Simulation setting

- We denote the $i$-th singular value of $M$ by $\sigma_{i}$.

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p}
$$

- We focus on the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{p}$ of the matrix quadratic risk $R(M, \hat{M})$.
- Since $R(M, \hat{M})=n I_{p}$ for MLE $\hat{M}=X$, an estimator is minimax if and only if $\lambda_{1} \leq n$ for every $M$.
- Bayes estimator with $\pi_{\text {SVS }}(M)=\operatorname{det}\left(M^{\top} M\right)^{-(n-p-1) / 2}$
- Bayes estimator with Stein's prior $\pi_{\mathrm{S}}(M)=\|M\|_{\mathrm{F}}^{2-n p}$
- Efron-Morris estimator $\hat{M}_{\mathrm{EM}}=X\left(I-(n-p-1)\left(X^{\top} X\right)^{-1}\right)$
- almost the same risk with Bayes estimators with $\pi_{\text {SVS }}$
- James-Stein estimator $\hat{M}_{\mathrm{JS}}=\left(1-(n p-2) /\|X\|_{\mathrm{F}}^{2}\right) X$
- almost the same risk with Bayes estimators with $\pi_{\mathrm{S}}$


## Simulation results (Figure 1)

- eigenvalues of Bayes estimators ( $n=5, p=3, \sigma_{1}=10, \sigma_{3}=0$ )
- left: $\pi_{\text {svs }}$, right: $\pi_{\mathrm{S}}$


- For $\pi_{\text {svs }}$, all eigenvalues do not exceed $n=5$, which indicates the minimaxity.
- $\lambda_{1}$ and $\lambda_{3}$ are almost constant with values $\lambda_{1} \approx 5$ and $\lambda_{3} \approx 4$.
- $\lambda_{2}$ increases from 4 to 5 with $\sigma_{2}$.
- These are understood from the fact that $\pi_{\text {Svs }}$ shrinks each singular value separately.


## Simulation results (Figure 1)

- eigenvalues of Bayes estimators ( $n=5, p=3, \sigma_{1}=10, \sigma_{3}=0$ )
- left: $\pi_{\text {svs }}$, right: $\pi_{\mathrm{S}}$


- For $\pi_{\mathrm{s}}, \lambda_{1} \geq n=5$ when $\sigma_{2} \leq 8 \rightarrow$ not minimax.
- However, since this estimatot is minimax under the Frobenius loss, $\lambda_{1}+\lambda_{2}+\lambda_{3} \leq n p=15$.
- cf. James-Stein estimator is not minimax componentwise, even though it is minimax under the quadratic loss for the whole vector (Lehmann and Casella, 2006).


## Simulation results (Figure 2)

- eigenvalues ( $n=5, p=3, \sigma_{2}=\sigma_{3}=0$ )
- left: $\pi_{\text {svs }}$, right: $\pi_{\mathrm{S}}$


- For $\pi_{\text {SVS }}$, both $\lambda_{2}$ and $\lambda_{3}$ are almost constant around 4
$\rightarrow \pi_{\text {svs }}$ works particularly well when $M$ has low rank


## Simulation results (Figure 3)

- eigenvalues $\left(n=100, p=20, \sigma_{i}=(6-i) / 5 \cdot \sigma_{1}(i=2, \ldots, 5)\right.$, $\sigma_{6}=\cdots=\sigma_{20}=0$ )
- left: $\hat{M}_{\mathrm{EM}}$. right: $\hat{M}_{\mathrm{JS}}$

- The advantage of $\hat{M}_{\text {EM }}$ to the low-rank setting is more pronounced in higher dimensions.

$$
\text { - } \lambda_{6} \approx \cdots \approx \lambda_{20} \approx 20
$$

## Summary

$$
X \sim \mathrm{~N}_{n, p}\left(M, I_{n}, I_{p}\right)
$$

- The Bayes estimator with a matrix superharmonic prior is minimax under matrix quadratic loss:

$$
\begin{gathered}
\tilde{\Delta} \pi:=\left(\sum_{a=1}^{n} \frac{\partial^{2} \pi}{\partial M_{a i} \partial M_{a j}}\right)_{i j} \leq O \\
\Rightarrow \quad \mathrm{E}\left(\hat{M}^{\pi}(X)-M\right)^{\top}\left(\hat{M}^{\pi}(X)-M\right) \leq n I_{p}
\end{gathered}
$$

- The matrix t-prior

$$
\pi_{\alpha, \beta}(M)=\operatorname{det}\left(M^{\top} M+\beta I_{p}\right)^{-(\alpha+n+p-1) / 2}
$$

is matrix superharmonic when $-n-p+1 \leq \alpha \leq-2 p$ and $\beta \geq 0$.

- Matrix superharmonic priors work well for low-rank matrices.
- paper: M. and Strawderman, Biometrika 2021+

