Matrix superharmonic priors for Bayes estimation under matrix quadratic loss

Takeru Matsuda (RIKEN Center for Brain Science) William E. Strawderman (Rutgers University)

Abstract

Stein (1974)

When $X \sim N_n(\mu, I_n)$ ($n \ge 3$), Bayes estimator with a superharmonic prior $\pi(\mu)$ is minimax under quadratic loss:

$$\Delta \pi := \sum_{a=1}^{n} \frac{\partial^2 \pi}{\partial \mu_a^2} \le 0 \quad \Rightarrow \quad \mathbf{E} \|\hat{\mu}^{\pi}(x) - \mu\|^2 \le n$$

This study (M. and Strawderman, *Biometrika* 2021+) When $X \sim N_{n,p}(M, I_n, I_p)$ ($n \ge p + 2$), Bayes estimator with a matrix superharmonic prior is minimax under matrix quadratic loss:

$$\widetilde{\Delta}\pi := \left(\sum_{a=1}^{n} \frac{\partial^{2}\pi}{\partial M_{ai}\partial M_{aj}}\right)_{ij} \le O$$
$$\Rightarrow \quad \mathbf{E}(\hat{M}^{\pi}(X) - M)^{\top}(\hat{M}^{\pi}(X) - M) \le nI_{p}$$

Stein's paradox

 $X \sim N_n(\mu, I_n)$

- estimate μ based on X under quadratic loss $||\hat{\mu} \mu||^2$
- Maximum likelihood estimator $\hat{\mu}_{MLE}(x) = x$ is minimax.

Theorem (Stein, 1956)

When $n \ge 3$, $\hat{\mu}_{MLE}(x) = x$ is inadmissible.

- Shrinkage estimators dominate $\hat{\mu}_{MLE}$.
- e.g. James-Stein estimator (James and Stein, 1961)

$$\hat{\mu}_{JS}(x) = \left(1 - \frac{n-2}{||x||^2}\right) x$$
$$E||\hat{\mu}_{JS}(x) - \mu||^2 \le E||\hat{\mu}_{MLE}(x) - \mu||^2 = n$$

• JS shrinks *x* toward the origin.

Risk comparison

JS attains large risk reduction when µ is close to the origin

superharmonic prior \Rightarrow minimax

• Bayes estimator of μ with prior $\pi(\mu)$ (posterior mean)

$$\hat{\mu}^{\pi}(x) = \mathcal{E}_{\pi}[\mu \mid x] = \int \mu \pi(\mu \mid x) d\mu$$

superharmonic prior

$$\Delta \pi(\mu) = \sum_{a=1}^{n} \frac{\partial^2}{\partial \mu_a^2} \pi(\mu) \le 0$$

Theorem (Stein, 1974)

The Bayes estimator with a superharmonic prior is minimax.

• e.g. Stein's prior $(n \ge 3)$

$$\pi_{\rm S}(\mu) = ||\mu||^{2-n}$$

• Bayes estimator with $\pi_{\rm S}$ shrinks toward the origin like JS.

5 / 24

Shrinkage estimation of normal mean matrix

$$X \sim N_{n,p}(M, I_n, I_p) \quad (X_{ai} \sim N(M_{ai}, 1))$$

estimate M based on X under Frobenius loss

$$\|\hat{M} - M\|_{\rm F}^2 = \sum_{a=1}^n \sum_{i=1}^p (\hat{M}_{ai} - M_{ai})^2$$

• Efron–Morris estimator (= James–Stein estimator when p = 1) $\hat{M}_{\text{EM}}(X) = X \left(I_p - (n - p - 1)(X^{\top}X)^{-1} \right)$

Theorem (Efron and Morris, 1972)

When $n \ge p + 2$, \hat{M}_{EM} is minimax and dominates $\hat{M}_{\text{MLE}}(X) = X$.

• Stein (1974): $\hat{M}_{\rm EM}$ shrinks singular values separately.

$$\sigma_i(\hat{M}_{\rm EM}) = \left(1 - \frac{n-p-1}{\sigma_i(X)^2}\right) \sigma_i(X) = \sigma_i(X)$$

Risk function (rank 2)

• $\hat{M}_{\rm EM}$ works well when $\sigma_2(M)$ is small, even if $\sigma_1(M)$ is large.

• \hat{M}_{JS} works well if $||M||_F^2 = \sigma_1(M)^2 + \sigma_2(M)^2 + \sigma_3(M)^2$ is small.

Risk function (rank 1)

•
$$n = 10, p = 3, \sigma_2(M) = \sigma_3(M) = 0$$

• $\hat{M}_{\rm EM}$ has constant risk reduction even if $\sigma_1(M)$ is large.

• Therefore, $\hat{M}_{\rm EM}$ works well when *M* has low rank.

Singular value shrinkage prior (M. and Komaki, 2015)

$$\pi_{\text{SVS}}(M) = \det(M^{\top}M)^{-(n-p-1)/2} = \prod_{i=1}^{p} \sigma_{i}(M)^{-(n-p-1)}$$

- puts more weight on matrices with smaller singular values
 → shrinks singular values separately
- When p = 1, π_{SVS} coincides with Stein's prior $\pi_{S}(\mu) = ||\mu||^{2-n}$.

Theorem (M. and Komaki, *Biometrika* 2015) When $n \ge p + 2$, π_{SVS} is superharmonic:

$$\Delta \pi_{\rm SVS} = \sum_{a=1}^{n} \sum_{i=1}^{p} \frac{\partial^2 \pi_{\rm SVS}}{\partial M_{ai}^2} \le 0.$$

Bayes estimator with π_{SVS} is minimax under Frobenius loss.

- similar behavior to EM
- works well when M has (approximately) low rank ভাৰ ভাৰ তাৰল

Summary (so far)

vector	matrix
James–Stein estimator	Efron–Morris estimator
$\hat{\mu}_{\rm JS} = \left(1 - \frac{n-2}{ x ^2}\right) x$	$\hat{M}_{\rm EM} = X \left(I_p - (n - p - 1)(X^{T}X)^{-1} \right)$
Stein's prior	singular value shrinkage prior
$\pi_{\rm S}(\mu) = \ \mu\ ^{-(n-2)}$	$\pi_{\rm SVS}(M) = \det(M^{\rm T}M)^{-(n-p-1)/2}$

• note: JS and EM are not (generalized) Bayes estimators.

Estimation under matrix quadratic loss

$$X \sim N_{n,p}(M, I_n, I_p) \quad (X_{ai} \sim N(M_{ai}, 1))$$

estimate M based on X under matrix quadratic loss

$$L(M, \hat{M}) = (\hat{M} - M)^{\top} (\hat{M} - M) \in \mathbb{R}^{p \times p}$$

risk function

$$R(M, \hat{M}) = \mathbb{E}_M[L(M, \hat{M}(X))] \in \mathbb{R}^{p \times p}$$

- We compare $R(M, \hat{M})$ in the Löwner order \leq
 - $A \leq B \Leftrightarrow B A$ is positive semidefinite
 - If $R(M, \hat{M}_1) \leq R(M, \hat{M}_2)$, then $E_M ||\hat{M}_1 c Mc||^2 \leq E_M ||\hat{M}_2 c Mc||^2$ for every c
- cf. multivariate linear regression

Unbiased risk estimate & minimaxity of EM

matrix divergence

$$(\widetilde{\operatorname{div}} g(X))_{ij} = \sum_{a=1}^{n} \frac{\partial}{\partial X_{ai}} g_{aj}(X)$$

Theorem

The matrix quadratic risk of $\hat{M} = X + g(X)$ is given by

$$R(M, \hat{M}) = nI_p + \mathcal{E}_M[\widetilde{\operatorname{div}} g(X) + (\widetilde{\operatorname{div}} g(X))^\top + g(X)^\top g(X)]$$

Theorem

When n - p - 1 > 0, the Efron–Morris estimator is minimax under the matrix quadratic loss:

$$R(M, \hat{M}_{\rm EM}) = nI_p - (n - p - 1)^2 E_M[(X^{\top}X)^{-1}] \le nI_p$$

Matrix superharmonicity

• "sphere" with center $X \in \mathbb{R}^{n \times p}$ and "radius" $\rho \in \mathbb{R}^{p}$

$$S_{X,\rho} = \{X + e\rho^{\top} \mid e \in \mathbb{R}^{n}, ||e|| = 1\}$$

• average value of f on $S_{X,\rho}$

$$L(f: X, \rho) = \frac{1}{\Omega_n} \int_{S_{0,1}} f(X + e\rho^{\top}) \mathrm{d}s(e)$$

Definition

An extended real-valued function $f : \mathbb{R}^{n \times p} \to \mathbb{R} \cup \{\infty\}$ is matrix superharmonic if

- f is lower semicontinuous
- 2 f ≠ ∞
- **3** $L(f: X, \rho) \leq f(X)$ for every $X \in \mathbb{R}^{n \times p}$ and $\rho \in \mathbb{R}^p$

Matrix superharmonic ⇒ superharmonic

Lemma

If a function $f : \mathbb{R}^{n \times p} \to \mathbb{R} \cup \{\infty\}$ is matrix superharmonic, then $f \circ \text{vec}^{-1}$ is superharmonic.

• Proof: For every $X \in \mathbb{R}^{n \times p}$ and r > 0,

$$L(f \circ \operatorname{vec}^{-1} : \operatorname{vec}(X), r) = \frac{1}{\Omega_p r^{p-1}} \int_{S_{0,r}} L(f : X, \rho) \mathrm{d}s(\rho) \le f(X)$$

• The converse does not hold when $p \ge 2$.

• e.g.
$$f(X) = ||X||_{F}^{2-n_{F}}$$

Characterization by matrix Laplacian

 Matrix superharmonicity is characterized by a matrix version of the Laplacian.

Definition

For a C^2 function $f : \mathbb{R}^{n \times p} \to \mathbb{R}$, its matrix Laplacian $\widetilde{\Delta}f : \mathbb{R}^{n \times p} \to \mathbb{R}^{p \times p}$ is defined as

$$(\widetilde{\Delta}f(X))_{ij} = \sum_{a=1}^{n} \frac{\partial^2}{\partial X_{ai} \partial X_{aj}} f(X)$$

Theorem

A C^2 function $f : \mathbb{R}^{n \times p} \to \mathbb{R}$ is matrix superharmonic if and only if its matrix Laplacian is negative semidefinite $\widetilde{\Delta}f(X) \leq O$ for every X.

Proof: Green's theorem

matrix superharmonic prior \Rightarrow minimax

$$\hat{M}^{\pi}(X) = \mathcal{E}_{\pi}[M \mid X] = X + \widetilde{\nabla} \log m_{\pi}(X)$$

Theorem

If $\sqrt{m_{\pi}(X)}$ is matrix superharmonic, then \hat{M}^{π} is minimax under the matrix quadratic loss.

Proof: by using the unbiased estimate of risk,

$$R(M, \hat{M}^{\pi}) = nI_p + 4E_M \left[\frac{\widetilde{\Delta} \sqrt{m_{\pi}(X)}}{\sqrt{m_{\pi}(X)}}\right]$$

Theorem

If $\pi(M)$ is matrix superharmonic, then $\sqrt{m_{\pi}(X)}$ is also matrix superharmonic and \hat{M}^{π} is minimax under the matrix quadratic loss.

• When *p* = 1, it reduces to the classical result by Stein (1974).

A class of matrix superharmonic priors

improper matrix t-prior

$$\pi_{\alpha,\beta}(M) = \det(M^{\mathsf{T}}M + \beta I_p)^{-(\alpha+n+p-1)/2}$$

Theorem

If $-n - p + 1 \le \alpha \le -2p$ and $\beta \ge 0$, then $\pi_{\alpha,\beta}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to $\pi_{\alpha,\beta}(M)$ is minimax under the matrix quadratic loss.

 When p = 1, it reduces to the result by Faith (1993) on (improper) multivariate t-priors.

Matrix superharmonicity of π_{SVS}

• When $\alpha = -2p$ and $\beta = 0$, the prior $\pi_{\alpha,\beta}(M)$ coincides with the singular value shrinkage prior

$$\pi_{\rm SVS}(M) = \det(M^{\top}M)^{-(n-p-1)/2}$$

Corollary

When n - p - 1 > 0, $\pi_{SVS}(M)$ is matrix superharmonic and the generalized Bayes estimator with respect to π_{SVS} is minimax under the matrix quadratic loss.

 The matrix superharmonicity of π_{SVS} is strongly concentrated on the space of low rank matrices.

Corollary

If *M* has full-rank, then $\Delta \pi_{SVS}(M) = O$.

Simulation setting

- We denote the *i*-th singular value of M by σ_i .
 - $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$
- We focus on the eigenvalues λ₁ ≥ · · · ≥ λ_p of the matrix quadratic risk R(M, M̂).
 - Since R(M, M̂) = nI_p for MLE M̂ = X, an estimator is minimax if and only if λ₁ ≤ n for every M.
- Bayes estimator with $\pi_{SVS}(M) = \det(M^{\top}M)^{-(n-p-1)/2}$
- Bayes estimator with Stein's prior $\pi_{\rm S}(M) = ||M||_{\rm F}^{2-np}$
- Efron–Morris estimator $\hat{M}_{EM} = X(I (n p 1)(X^{T}X)^{-1})$
 - almost the same risk with Bayes estimators with $\pi_{\rm SVS}$
- James–Stein estimator $\hat{M}_{JS} = (1 (np 2)/||X||_F^2)X$
 - almost the same risk with Bayes estimators with π_S

Simulation results (Figure 1)

- eigenvalues of Bayes estimators (n = 5, p = 3, $\sigma_1 = 10$, $\sigma_3 = 0$)
- left: π_{SVS} , right: π_{S}

- For π_{SVS}, all eigenvalues do not exceed n = 5, which indicates the minimaxity.
 - λ_1 and λ_3 are almost constant with values $\lambda_1 \approx 5$ and $\lambda_3 \approx 4$.
 - λ_2 increases from 4 to 5 with σ_2 .
 - ► These are understood from the fact that π_{SVS} shrinks each singular value separately.

Simulation results (Figure 1)

- eigenvalues of Bayes estimators (n = 5, p = 3, $\sigma_1 = 10$, $\sigma_3 = 0$)
- left: π_{SVS} , right: π_{S}

• For π_s , $\lambda_1 \ge n = 5$ when $\sigma_2 \le 8 \rightarrow$ not minimax.

- However, since this estimatot is minimax under the Frobenius loss, $\lambda_1 + \lambda_2 + \lambda_3 \le np = 15$.
- cf. James–Stein estimator is not minimax componentwise, even though it is minimax under the quadratic loss for the whole vector (Lehmann and Casella, 2006).

Simulation results (Figure 2)

- eigenvalues ($n = 5, p = 3, \sigma_2 = \sigma_3 = 0$)
- left: π_{SVS} , right: π_{S}

• For π_{SVS} , both λ_2 and λ_3 are almost constant around 4 $\rightarrow \pi_{SVS}$ works particularly well when *M* has low rank

Simulation results (Figure 3)

- eigenvalues ($n = 100, p = 20, \sigma_i = (6 i)/5 \cdot \sigma_1$ (i = 2, ..., 5), $\sigma_6 = \cdots = \sigma_{20} = 0$)
- left: $\hat{M}_{\rm EM}$. right: $\hat{M}_{\rm JS}$

• The advantage of $\hat{M}_{\rm EM}$ to the low-rank setting is more pronounced in higher dimensions.

•
$$\lambda_6 \approx \cdots \approx \lambda_{20} \approx 20$$

Summary

$$X \sim \mathcal{N}_{n,p}(M, I_n, I_p)$$

• The Bayes estimator with a matrix superharmonic prior is minimax under matrix quadratic loss:

$$\widetilde{\Delta}\pi := \left(\sum_{a=1}^{n} \frac{\partial^{2}\pi}{\partial M_{ai}\partial M_{aj}}\right)_{ij} \le O$$
$$\Rightarrow \quad \mathbf{E}(\hat{M}^{\pi}(X) - M)^{\top}(\hat{M}^{\pi}(X) - M) \le nI_{p}$$

• The matrix t-prior

$$\pi_{\alpha,\beta}(M) = \det(M^{\top}M + \beta I_p)^{-(\alpha+n+p-1)/2}$$

is matrix superharmonic when $-n - p + 1 \le \alpha \le -2p$ and $\beta \ge 0$.

- Matrix superharmonic priors work well for low-rank matrices.
- paper: M. and Strawderman, Biometrika 2021+