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Abstract
Stein (1974)

When X ~ N, (u, I,) (n > 3), Bayes estimator with a superharmonic
prior m(w) is minimax under quadratic loss:

= 0P R
Am = Z Ew <0 = E|Ffx)-ul<n
a=1 a

This study (M. and Strawderman, Biometrika 2021 +)

When X ~ N, ,(M, 1,,1,) (n > p + 2), Bayes estimator with a matrix
superharmonic prior is minimax under matrix quadratic loss:

A e Z” & ) L,
-\ & oMoM,;) T
a= ij

= EM (X)- M) (M"(X) - M) < nl,
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Stein’s paradox
X ~ Nn(/'t’ In)

@ estimate u based on X under quadratic loss || — ul|?
@ Maximum likelihood estimator fiy g(x) = x is minimax.

Theorem (Stein, 1956) J

When n > 3, fing(x) = x is inadmissible.

@ Shrinkage estimators dominate fiyy k.
@ e.g. James—Stein estimator (James and Stein, 1961)

-2
fus(x) = (1 z )x

[lxI12

Ellfs(x) — pl* < Ellame(x) — ul* = n /

@ JS shrinks x toward the origin. Js

origin
an o

X
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Risk comparison
quadratic risk E||g — u|* (n = 10)
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@ JS attains large risk reduction when u is close to the origin
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superharmonic prior = minimax
@ Bayes estimator of u with prior (i) (posterior mean)

() = Byl | 5] = f (e | 0

@ superharmonic prior

n 2

d
INMEDY aleyr(,u) <0

a=1

Theorem (Stein, 1974)

The Bayes estimator with a superharmonic prior is minimax.

@ e.g. Stein’s prior (n > 3)

() = |l

@ Bayes estimator with s shrinks toward the origin like JS.
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Shrinkage estimation of normal mean matrix

X ~ Nn,p(Ma In,lp) (Xai ~ N(Mai’ 1))

@ estimate M based on X under Frobenius loss

1M — MIl; = Z i(Mai - M)’

a=1 i=1

@ Efron—Morris estimator (= James—Stein estimator when p = 1)
Men(X) = X (I, - (n = p - DX"X)™")

Theorem (Efron and Morris, 1972)
When n > p + 2, Mgy is minimax and dominates My e(X) = X. J

@ Stein (1974): Mgy shrinks singular values separately.
n—-p-1

oi(Mgm) = (1 - o (X)?

)O'i(X)
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Risk function (rank 2)
@ n=10,p=3,0,(M)=20,03M)=0
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@ Mgy works well when o (M) is small, even if o (M) is large.
> Mjys works well if | M2 = o1 (M)? + o2(M)* + o3(M)* is small.
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Risk function (rank 1)
en=10,p=3,0o(M)=03M)=0
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@ Mgy has constant risk reduction even if o (M) is large.
@ Therefore, Mgy works well when M has low rank.

8/24



Singular value shrinkage prior (M. and Komaki, 2015)

P
rsys(M) = det(M™ M)~ =P=D/2 = 1—[ o (M)~
i=1

@ puts more weight on matrices with smaller singular values
— shrinks singular values separately
@ When p = 1, mrgys coincides with Stein’s prior (i) = ||ul[>™".

Theorem (M. and Komaki, Biometrika 2015)

When n > p + 2, ngys is superharmonic:

Antgys = Z Z 067;;;6 <

a=1 i=1

@ Bayes estimator with rgys is minimax under Frobenius loss.
» similar behavior to EM

» works well when M has (approximately) low rank
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Summary (so far)

vector matrix
James—Stein estimator Efron—Morris estimator
fus = (1-123) x Mey = X (I, = (n = p = DX™X)™")
Stein’s prior singular value shrinkage prior
7s(p) = [l =" sys(M) = det(M"M)~"P=D/2

@ note: JS and EM are not (generalized) Bayes estimators.
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Estimation under matrix quadratic loss

X ~ Nn,p(M’ Imlp) (X(ll ~ N(Mai’ 1))

@ estimate M based on X under matrix quadratic loss
L(M, M) = (M - M)" (M - M) € RP*?
@ risk function
R(M, M) = Ey[L(M, M(X))] € RP*P

@ We compare R(M, M) in the Léwner order <
» A < B o B- Ais positive semidefinite
» If R(M, M) < R(M, M), then Ey||Mc — Mcl|? < Eyl|Mac — Mc|?
for every ¢
@ cf. multivariate linear regression
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Unbiased risk estimate & minimaxity of EM

@ matrix divergence

— "0
(div g(X))ij = )  —84i(X)

Theorem
The matrix quadratic risk of M = X + g(X) is given by

R(M, M) = nl, + Ey[div g(X) + (div g(X))" + g(X)" g(X)]

Theorem
When n — p — 1 > 0, the Efron—Morris estimator is minimax under
the matrix quadratic loss:

R(M, Mem) = nl, — (n— p — 1’Ex[(X"X)™'] < nl,
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Matrix superharmonicity
@ “sphere” with center X € R™” and “radius” p € R?

Sxp={X+ep" |eeR" |lel =1}

@ average value of fon Sy,

1
L Xp) =& ; (X +epT)ds(e)

Definition
An extended real-valued function f : R™” — R U {co} is matrix
superharmonic if

@  is lower semicontinuous
Q fzo
Q L(f: X.p) < f(X) for every X € R™? and p € R?
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Matrix superharmonic = superharmonic

Lemma

If a function f : R™” — R U {co} is matrix superharmonic, then
f o vec™! is superharmonic.

@ Proof: For every X e R™” and r > 0,

L(f ovec™' : vec(X),r) =

f L(f : X.p)ds(o) < F(X)
So,r

p—1
Q,r

@ The converse does not hold when p > 2.

- eg. f(X) = IXIE"
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Characterization by matrix Laplacian

@ Matrix superharmonicity is characterized by a matrix version of
the Laplacian.

Definition
For a C? function f : R™” — R, its matrix Laplacian
Af : R™P — RP*P is defined as

— & o?
AfX)); =) axax X
=l aiYAa

Theorem

A C? function f : R™? — R is matrix superharmonic if and only if its
matrix Laplacian is negative semidefinite Af(X) < O for every X.

@ Proof: Green’s theorem
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matrix superharmonic prior = minimax

M7 (X) = Ex[M | X] = X + Vlog my(X)
Theorem

If vm(X) is matrix superharmonic, then M~ is minimax under the
matrix quadratic loss.

@ Proof: by using the unbiased estimate of risk,

A «/_m,r(X>}

R(M, M™) = nl, + 4E, [ —

Theorem

If 7(M) is matrix superharmonic, then vm,(X) is also matrix
superharmonic and M~ is minimax under the matrix quadratic loss.

@ When p = 1, it reduces to the classical result by Stein (1974).
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A class of matrix superharmonic priors

@ improper matrix t-prior

Tap(M) = det(M™M +’81p)—(a+n+p—1)/2

Theorem

lf-n—p+1<a<-2pandp >0, then m, (M) is matrix
superharmonic and the generalized Bayes estimator with respect to
mq5(M) is minimax under the matrix quadratic loss.

@ When p = 1, it reduces to the result by Faith (1993) on
(improper) multivariate t-priors.
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Matrix superharmonicity of ngys
@ When a = -2p and g = 0, the prior x, 3(M) coincides with the
singular value shrinkage prior

ngvs(M) = det(M™ M)~=P=D/2

Corollary

Whenn —p -1 > 0, nsys(M) is matrix superharmonic and the
generalized Bayes estimator with respect to ngys is minimax under
the matrix quadratic loss.

@ The matrix superharmonicity of mgys is strongly concentrated
on the space of low rank matrices.

Corollary
If M has full-rank, then ZnSVS(M) = 0.
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Simulation setting

@ We denote the i-th singular value of M by o.

> 01202220

@ We focus on the eigenvalues 4, > --- > 4, of the matrix
quadratic risk R(M, M).
» Since R(M, M) = nl,, for MLE M = X, an estimator is minimax if
and only if A1 < n for every M.

@ Bayes estimator with wgys(M) = det(M™ M)~(=P=D/2
e Bayes estimator with Stein’s prior 75(M) = |||} ™"
@ Efron—Morris estimator Mgy = X(I — (n — p—-DHX"X)™
» almost the same risk with Bayes estimators with wgys
@ James—Stein estimator Mys = (1 — (np — 2)/IIX|12)X
» almost the same risk with Bayes estimators with g
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Simulation results (Figure 1)
@ eigenvalues of Bayes estimators (n =5, p = 3, 0y = 10, 053 = 0)
@ left: mgys, right: mg
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@ For mgys, all eigenvalues do not exceed n = 5, which indicates
the minimaxity.
» A; and Az are almost constant with values 1; = 5 and 43 = 4.
» Ay increases from 4 to 5 with 0.
» These are understood from the fact that 7gys shrinks each
singular value separately. 20,24



Simulation results (Figure 1)
@ eigenvalues of Bayes estimators (n =5, p = 3, 0y = 10, 053 = 0)
@ left: mgys, right: mg
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@ For g, 4; = n =5 when o, < 8 — not minimax.
» However, since this estimatot is minimax under the Frobenius
loss, A1 + A2 + A3 < np = 15.
» cf. James—Stein estimator is not minimax componentwise, even
though it is minimax under the quadratic loss for the whole
vector (Lehmann and Casella, 2006). 2124



Simulation results (Figure 2)

@ eigenvalues (n=5,p=3,0, =03 =0)
o left: TTSVS» rlght s
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@ For ngys, both A, and A5 are almost constant around 4

— msys Works particularly well when M has low rank
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Simulation results (Figure 3)

@ eigenvalues (n =100, p =20,0;,=(6—-1)/5-01 (i =2,...,5),

0-6 = e e = 0'20 = O)
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@ The advantage of Mgy to the low-rank setting is more
pronounced in higher dimensions.

» dgr - x Ay =20
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Summary

X ~ Nn,p(Ma I,, Ip)

@ The Bayes estimator with a matrix superharmonic prior is
minimax under matrix quadratic loss:

T\ & oMM, ) T
a= ij

= E(M”(X) — M)T(MR(X) _ M) <nl,
@ The matrix t-prior
ﬂa,ﬁ(M) = det(MTM +ﬁ[p)—(a+n+p—1)/2

is matrix superharmonic when -n—p+1<a <-2pandp > 0.
@ Matrix superharmonic priors work well for low-rank matrices.
@ paper: M. and Strawderman, Biometrika 2021+
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