Inadmissibility of the corrected Akaike information criterion

Takeru Matsuda

University of Tokyo, RIKEN Center for Brain Science

Abstract

- multivariate linear regression model

$$
Y \sim \mathrm{~N}_{n, q}\left(X B, I_{n}, \Sigma\right)
$$

- corrected Akaike information criterion
- minimum variance unbiased estimator of the expected Kullback-Leibler discrepancy

$$
\mathrm{AICc}=-2 \log p(Y \mid \hat{B}, \hat{\Sigma})+\frac{2 n}{n-p-q-1}\left(p q+\frac{q(q+1)}{2}\right)
$$

Theorem (M., Bernoulli 2023+)

AICc is inadmissible and dominated by

$$
\mathrm{MAICc}=\mathrm{AICc}-\operatorname{ctr}\left(\hat{\Sigma}\left((X \hat{B})^{\top}(X \hat{B})\right)^{-1}\right)
$$

as an estimator of the Kullback-Leibler discrepancy.

Contents

- Stein's paradox
- Loss estimation framework
- Inadmissibility of AICc
- Simulation

Stein's paradox

Estimation of normal mean vector

$$
X \sim \mathrm{~N}_{n}\left(\mu, I_{n}\right)
$$

- estimate μ based on X by some estimator $\hat{\mu}=\hat{\mu}(x)$
- maximum likelihood estimator (MLE): $\hat{\mu}_{\text {MLE }}(x)=x$
- Is MLE the best estimator ??
\rightarrow No !! (Stein’s paradox, 1956)
- Statistical decision theory provides a framework to compare estimators

Loss and risk

- loss function $L(\mu, \hat{\mu})$: discrepancy between the estimate $\hat{\mu}$ and the true value μ
- e.g. quadratic loss

$$
L(\mu, \hat{\mu})=\|\hat{\mu}-\mu\|^{2}
$$

- risk function $R(\mu, \hat{\mu})$: average loss of an estimator $\hat{\mu}=\hat{\mu}(x)$

$$
R(\mu, \hat{\mu})=\mathrm{E}_{\mu}[L(\mu, \hat{\mu}(x))]=\int L(\mu, \hat{\mu}(x)) p(x \mid \mu) \mathrm{d} x
$$

- In statistical decision theory, estimators are compared with the risk functions.
- smaller risk is preferable

Dominance

Definition

An estimator $\hat{\mu}_{1}$ is said to dominate another estimator $\hat{\mu}_{2}$ if

$$
\begin{aligned}
& R\left(\mu, \hat{\mu}_{1}\right) \leq R\left(\mu, \hat{\mu}_{2}\right) \quad(\text { for every } \mu) \\
& R\left(\mu, \hat{\mu}_{1}\right)<R\left(\mu, \hat{\mu}_{2}\right) \quad(\text { for some } \mu)
\end{aligned}
$$

Admissibility and minimaxity

Definition

An estimator $\hat{\mu}$ is said to be admissible if no estimator dominates $\hat{\mu}$.

Definition

An estimator $\hat{\mu}$ is said to be inadmissible if there exists an estimator that dominates $\hat{\mu}$.

Definition

An estimator $\hat{\mu}^{*}$ is said to be minimax if it minimizes the maximum risk:

$$
\sup _{\mu} R\left(\mu, \hat{\mu}^{*}\right)=\inf _{\hat{\mu}} \sup _{\mu} R(\mu, \hat{\mu})
$$

Stein's paradox

$$
X \sim \mathrm{~N}_{n}\left(\mu, I_{n}\right)
$$

- estimate μ based on X under quadratic loss $\|\hat{\mu}-\mu\|^{2}$
- Maximum likelihood estimator $\hat{\mu}_{\text {MLE }}(x)=x$ is minimax.

Theorem (Stein, 1956)

When $n \geq 3$, $\hat{\mu}_{\text {MLE }}(x)=x$ is inadmissible.

- Shrinkage estimators dominate $\hat{\mu}_{\text {MLE }}$.
- e.g. James-Stein estimator (James and Stein, 1961)

$$
\hat{\mu}_{\mathrm{JS}}(x)=\left(1-\frac{n-2}{\|x\|^{2}}\right) x
$$

$$
\mathrm{E}\left\|\hat{\mu}_{\mathrm{JS}}(x)-\mu\right\|^{2} \leq \mathrm{E}\left\|\hat{\mu}_{\mathrm{MLE}}(x)-\mu\right\|^{2}=n
$$

- JS shrinks x toward the origin.

Risk function $(n=10)$

quadratic risk $\mathrm{E}\|\hat{\mu}-\mu\|^{2}(n=10)$

- JS attains large risk reduction when μ is close to the origin

Estimation of normal mean matrix

$$
X \sim \mathrm{~N}_{n, p}\left(M, I_{n}, I_{p}\right) \quad \Leftrightarrow \quad X_{a i} \sim \mathrm{~N}\left(M_{a i}, 1\right)
$$

- estimate M based on X under Frobenius loss

$$
L(M, \hat{M})=\|\hat{M}-M\|_{\mathrm{F}}^{2}=\sum_{a=1}^{n} \sum_{i=1}^{p}\left(\hat{M}_{a i}-M_{a i}\right)^{2}
$$

- Efron-Morris estimator (= James-Stein estimator when $p=1$)

$$
\hat{M}_{\mathrm{EM}}(X)=X\left(I_{p}-(n-p-1)\left(X^{\top} X\right)^{-1}\right)
$$

Theorem (Efron and Morris, 1972)

When $n \geq p+2, \hat{M}_{\mathrm{EM}}$ is minimax and dominates $\hat{M}_{\mathrm{MLE}}(X)=X$.

- Stein (1974): \hat{M}_{EM} shrinks singular values separately.

$$
\sigma_{i}\left(\hat{M}_{\mathrm{EM}}\right)=\left(1-\frac{n-p-1}{\sigma_{i}(X)^{2}}\right) \sigma_{i}(X)
$$

Risk function (rank 2)

- $n=10, p=3, \sigma_{1}(M)=20, \sigma_{3}(M)=0$

- \hat{M}_{EM} works well when $\sigma_{2}(M)$ is small, even if $\sigma_{1}(M)$ is large.
- \hat{M}_{JS} works well if $\|M\|_{\mathrm{F}}^{2}=\sigma_{1}(M)^{2}+\sigma_{2}(M)^{2}+\sigma_{3}(M)^{2}$ is small.

Risk function (rank 1)

- $n=10, p=3, \sigma_{2}(M)=\sigma_{3}(M)=0$

- \hat{M}_{EM} has constant risk reduction even if $\sigma_{1}(M)$ is large.
- Therefore, \hat{M}_{EM} works well when M is close to low-rank.

Related studies

－Singular value shrinkage prior（M．and Komaki，2015）

vector	James－Stein estimator（1961）	Stein＇s prior（1974）
matrix	Efron－Morris estimator（1972）	M．and Komaki（2015）

－Matrix quadratic loss and matrix superharmonicity（M．and Strawderman，2022）
－Adaptive estimation via singular value shrinkage（M．，2022）
－Empirical Bayes matrix completion（M．and Komaki，2019）
－レビュー：松田孟留．縮小推定と優調和性．応用数理， 2022.

Loss estimation framework

Loss estimation framework

$$
Y \sim p(y \mid \theta)
$$

- $\hat{\theta}(y)$: estimate of θ
- $\lambda(y)$: estimate of the loss $L(\theta, \hat{\theta}(y))$
- note: loss depends on both θ and y

Definition

A loss estimator $\lambda_{1}(y)$ is said to dominate another one $\lambda_{2}(y)$ if

$$
\begin{array}{lr}
\mathrm{E}_{\theta}\left[\left(\lambda_{1}(y)-L(\theta, \hat{\theta}(y))\right)^{2}\right] \leq \mathrm{E}_{\theta}\left[\left(\lambda_{2}(y)-L(\theta, \hat{\theta}(y))\right)^{2}\right] & (\text { for every } \theta) \\
\mathrm{E}_{\theta}\left[\left(\lambda_{1}(y)-L(\theta, \hat{\theta}(y))\right)^{2}\right]<\mathrm{E}_{\theta}\left[\left(\lambda_{2}(y)-L(\theta, \hat{\theta}(y))\right)^{2}\right] & (\text { for some } \theta)
\end{array}
$$

- (In)admissibility of loss estimators are defined accordingly.

Loss estimation for a normal mean vector

$$
Y \sim \mathrm{~N}_{p}\left(\theta, I_{p}\right)
$$

- quadratic loss

$$
L(\theta, \hat{\theta})=\|\hat{\theta}-\theta\|^{2}
$$

- Stein's unbiased risk estimate (SURE) for $\hat{\theta}(y)=y+g(y)$

$$
\begin{gathered}
\lambda^{\mathrm{U}}(y)=p+2 \nabla \cdot g(y)+\|g(y)\|^{2} \\
\mathrm{E}_{\theta}\left[\lambda^{\mathrm{U}}(y)\right]=\mathrm{E}_{\theta}[L(\theta, \hat{\theta}(y))]
\end{gathered}
$$

- For MLE $\hat{\theta}(y)=y$, SURE is $\lambda^{\mathrm{U}}(y)=p$

Loss estimation for a normal mean vector

Proposition (Johnstone, 1988)

If $p \geq 5$, then SURE $\lambda^{\mathrm{U}}(y)=p$ for MLE $(\hat{\theta}(y)=y)$ is inadmissible and dominated by $\lambda(y)=p-2(p-4)\|y\|^{-2}$:

$$
\mathrm{E}_{\theta}(\lambda(y)-L(\theta, \hat{\theta}(y)))^{2} \leq \mathrm{E}_{\theta}\left(\lambda^{\mathrm{U}}(y)-L(\theta, \hat{\theta}(y))\right)^{2}
$$

Loss estimation for a normal mean matrix

$$
Y \sim \mathrm{~N}_{p, q}\left(M, I_{p}, I_{q}\right)
$$

- Frobenius loss

$$
L(M, \hat{M})=\|\hat{M}-M\|_{\mathrm{F}}^{2}=\sum_{i, j}\left(\hat{M}_{i j}-M_{i j}\right)^{2}
$$

Theorem (M., 2023+)

If $p \geq 2 q+3$, then SURE $\lambda^{\mathrm{U}}(Y)=p q$ for MLE $(\hat{M}(Y)=Y)$ is inadmissible and dominated by

$$
\lambda(Y)=p q-\frac{2(p-2 q-2)}{q} \operatorname{tr}\left(\left(Y^{\top} Y\right)^{-1}\right) .
$$

Loss estimation for a normal mean matrix

- large improvement when some singular values of M are small
- constant reduction of MSE as long as $\sigma_{2}(M)=0$
\rightarrow works well when M is close to low-rank
- (similar to the Efron-Morris estimator)

Inadmissibility of the corrected AIC

Loss estimation for a predictive distribution

$$
Y \sim p(y \mid \theta), \quad \widetilde{Y} \sim p(\widetilde{y} \mid \theta)
$$

- predict \tilde{Y} from Y by a predictive distribution $\hat{p}(\widetilde{y} \mid y)$
- loss: Kullback-Leibler discrepancy

$$
d(p(\widetilde{y} \mid \theta), \hat{p}(\widetilde{y} \mid y))=-2 \int p(\widetilde{y} \mid \theta) \log \hat{p}(\widetilde{y} \mid y) \mathrm{d} \widetilde{y}
$$

(equivalent to Kullback-Leibler divergence up to constant)

AIC as a loss estimator

- MLE

$$
\hat{\theta}(y)=\underset{\theta}{\operatorname{argmax}} \log p(y \mid \theta)
$$

- plug-in predictive distribution

$$
\hat{p}_{\text {plug-in }}(\widetilde{y} \mid y)=p(\widetilde{y} \mid \hat{\theta}(y))
$$

- AIC is an approximately unbiased loss estimator:

$$
\mathrm{AIC}=-2 \log p(y \mid \hat{\theta}(y))+2 k
$$

$$
\mathrm{E}_{\theta}[\mathrm{AIC}] \approx \mathrm{E}_{\theta}\left[d\left(p(\widetilde{y} \mid \theta), \hat{p}_{\mathrm{plug}-\mathrm{in}}(\widetilde{y} \mid y)\right)\right]
$$

- Question: is AIC admissible ??

Multivariate linear regression model

$$
\begin{gathered}
y_{i}=B^{\top} x_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}_{q}(0, \Sigma), \quad i=1, \ldots, n \\
\downarrow \\
Y \sim \mathrm{~N}_{n, q}\left(X B, I_{n}, \Sigma\right)
\end{gathered}
$$

- Kullback-Leibler discrepancy

$$
d((B, \Sigma),(\hat{B}, \hat{\Sigma}))=-2 \int p(\tilde{Y} \mid B, \Sigma) \log p(\tilde{Y} \mid \hat{B}, \hat{\Sigma}) \mathrm{d} \tilde{Y}
$$

Known covariance case

$$
\begin{gathered}
Y \sim \mathrm{~N}_{n, q}\left(X B, I_{n}, \Sigma\right) \\
\hat{B}=\left(X^{\top} X\right)^{-1} X^{\top} Y \\
\text { AIC }=-2 \log p(Y \mid \hat{B}, \Sigma)+2 p q
\end{gathered}
$$

Theorem
If $p \geq 2 q+3$, then AIC is inadmissible and dominated by

$$
\mathrm{MAIC}=\operatorname{AIC}-\frac{2(p-2 q-2)}{q} \operatorname{tr}\left(\Sigma\left((X \hat{B})^{\top}(X \hat{B})\right)^{-1}\right) .
$$

Unknown covariance case

$$
\begin{gathered}
Y \sim \mathrm{~N}_{n, q}\left(X B, I_{n}, \Sigma\right) \\
\hat{B}=\left(X^{\top} X\right)^{-1} X^{\top} Y, \quad \hat{\Sigma}=\frac{1}{n}(Y-X \hat{B})^{\top}(Y-X \hat{B})
\end{gathered}
$$

- AIC: approximately unbiased

$$
\mathrm{AIC}=-2 \log p(Y \mid \hat{B}, \hat{\Sigma})+2\left(p q+\frac{q(q+1)}{2}\right)
$$

$$
\mathrm{E}_{B, \Sigma}[\mathrm{AIC}]=\mathrm{E}_{B, \Sigma}[d((B, \Sigma),(\hat{B}, \hat{\Sigma}))]+o(1) \quad(n \rightarrow \infty)
$$

- corrected AIC: exactly unbiased

$$
\begin{gathered}
\mathrm{AICc}=-2 \log p(Y \mid \hat{B}, \hat{\Sigma})+\frac{2 n}{n-p-q-1}\left(p q+\frac{q(q+1)}{2}\right) \\
\mathrm{E}_{B, \Sigma}[\mathrm{AICc}]=\mathrm{E}_{B, \Sigma}[d((B, \Sigma),(\hat{B}, \hat{\Sigma}))]
\end{gathered}
$$

Unknown covariance case

Theorem (M., 2023+)

AIC is inadmissible and dominated by AICc.

- proof: bias-variance decomposition \& AICc - AIC $=$ const.

Proposition (Davies et al., 2006)

AICc is the minimum variance unbiased estimator of the expected Kullback-Leibler discrepancy.

- proof: use Lehmann-Scheffé theorem
- Is AICc admissible ??

Inadmissibility of the corrected AIC

$$
\bar{c}=\frac{4 n^{2}}{(n-p)(q(n-p)+2)}\left(p-2 q-2-\frac{q^{2}+q-2}{n-p-q-1}\right)
$$

Theorem (M., 2023+)

If $n-p-q-1>0$ and $\bar{c}>0$, then for any $c \in(0, \bar{c}]$, AICc is inadmissible and dominated by

$$
\operatorname{MAICc}=\operatorname{AICc}-\operatorname{ctr}\left(\hat{\Sigma}\left((X \hat{B})^{\top}(X \hat{B})\right)^{-1}\right)
$$

- In simulation, $c=\bar{c}$ works well.

Single response case

$$
\begin{gathered}
y \sim \mathrm{~N}_{n}\left(X \beta, \sigma^{2} I_{n}\right) \\
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y, \quad \hat{\sigma}^{2}=\|y-X \hat{\beta}\|^{2} / n \\
\bar{c}=\frac{4 n^{2}(p-4)}{(n-p)(n-p+2)}
\end{gathered}
$$

Corollary (M., 2023+)

If $n-p-2>0$ and $\bar{c}>0$, then for any $c \in(0, \bar{c}]$, AICc is inadmissible and dominated by

$$
\mathrm{MAICc}=\mathrm{AICc}-c \hat{\sigma}^{2}\|X \hat{\beta}\|^{-2} .
$$

- In simulation, $c=\bar{c}$ works well.

Simulation

Single response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, p=10, \sigma^{2}=1$

- $c=\bar{c}$ seems to be a reasonable choice
- We adopt this value in the following experiments

Single response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), p=10, \sigma^{2}=1$

- larger improvement for smaller n

Single response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, \sigma^{2}=1$

- maximum improvement around $p=15$

Single response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, p=10$

- larger improvement for larger σ^{2} at $\beta \neq 0$

Multi-response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, p=10, q=2$

- large improvement when some singular values of M are small
- constant reduction of MSE as long as $\sigma_{2}(M)=0$

Multi-response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), p=10, q=2, \Sigma=I_{2}$

- maximum improvement around $n=40$

Multi-response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, q=2, \Sigma=I_{2}$

- smaller improvement for larger p

Multi-response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, p=10, q=2, \Sigma_{11}=\Sigma_{22}=1$

- largest improvement for $r=0$ (no correlation)

Multi-response

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=30, p=10, \Sigma=I_{q}$

Variable selection

- $X \sim \mathrm{~N}_{n, p}\left(0, I_{n}, I_{p}\right), n=20, p=10, q=1, \sigma^{2}=1$
- $\beta=(0.1,0.2,0.3,0.4,0.5,0,0,0,0,0)^{\top}$
- k-th submodel: $\beta_{k+1}=\cdots=\beta_{p}=0$

	1	2	3	4	5	6	7	8	9	10
AIC	89	8	15	29	352	129	76	76	81	145
AICc	277	147	37	16	460	44	15	4	0	0
MAICc	248	137	34	14	492	54	17	4	0	0

- MAICc selects the true model more frequently than AIC and AICc

Summary \& future work

Theorem (M., Bernoulli 2023+)

AICc is inadmissible and dominated by

$$
\mathrm{MAICc}=\operatorname{AICc}-\operatorname{ctr}\left(\hat{\Sigma}\left((X \hat{B})^{\top}(X \hat{B})\right)^{-1}\right)
$$

as an estimator of the Kullback-Leibler discrepancy.

- model generalization by asymptotic arguments ??
- high-dimensional settings ??
- cf. Bellec and Zhang (2021), Fujikoshi et al. (2014), Yanagihara et al. (2015)
- mis-specified cases ??
- cf. Fujikoshi and Satoh (1997), Reschenhofer (1999)
- model averaging ?? (e.g. Mallows criterion; Hansen, 2007)
- other information criteria (e.g. TIC, GIC) ??
- Bayesian predictive distribution ?? (cf. Kitagawa, 1997)

