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Abstract
@ multivariate linear regression model

Y ~ N, (XB, I, %)

@ corrected Akaike information criterion

» minimum variance unbiased estimator of the expected
Kullback-Leibler discrepancy

AICc = —2logp(Y | B,S) +

2n q(g+1
i ()
n—p—q—1 2

Theorem (M., Bernoulli 2023+)

AlCc is inadmissible and dominated by

MAICc = AICc — ctr(S((XB)T (X B))™)

as an estimator of the Kullback—Leibler discrepancy.
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Stein’s paradox
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Estimation of normal mean vector

X ~ N, (, I,)

@ estimate u based on X by some estimator i = ji(x)
@ maximum likelihood estimator (MLE): jimie(z) = =

@ Is MLE the best estimator ??

— No !l (Stein’s paradox, 1956)

@ Statistical decision theory provides a framework to compare
estimators
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Loss and risk

@ loss function L(u, i1): discrepancy between the estimate & and
the true value u

@ e.g. quadratic loss

L(p, ) = |lpn — pell?

@ risk function R(u, fi): average loss of an estimator i = fi(z)

R, 1) = BulL(p, Al2))] = / L, ile))p(z | p)de

@ In statistical decision theory, estimators are compared with the
risk functions.

» smaller risk is preferable
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Dominance
Definition
An estimator i, is said to dominate another estimator fi if

R(p, tn) < R(p, fiz)  (for every p)
R(/”': ﬂl) < R(,LL, ﬂ2) (fOI‘ some /'l’)

¢ R(ﬂ,ﬂZ)

R(u, f11)
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Admissibility and minimaxity

Definition
An estimator [ is said to be admissible if no estimator dominates fi. )

Definition
An estimator fi is said to be inadmissible if there exists an estimator
that dominates /i.

Definition
An estimator i* is said to be minimax if it minimizes the maximum
risk:

sup R(u, i*) = inf sup R(u, i)
H Eoow
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Stein’s paradox

X ~ Nu(p, In)

@ estimate u based on X under quadratic loss || — pu|?
@ Maximum likelihood estimator fiyre(x) = x is minimax.

Theorem (Stein, 1956) J

When n > 3, fimLe(z) = z is inadmissible.

@ Shrinkage estimators dominate k.
@ e.g. James-Stein estimator (James and Stein, 1961)

R n—2
pste) = (1- 57 ) :
Bllas(e) P < Elfnaste) —ulf =~
@ JS shrinks z toward the origin. IS

origin
an o
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Risk function (n = 10)
quadratic risk E||4 — u||? (n = 10)
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@ JS attains large risk reduction when p is close to the origin
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Estimation of normal mean matrix

X ~Npp(M, I,,I,) & Xu~N(Mgy,l)

@ estimate M based on X under Frobenius loss

n p
LM, 51) = |0 = M2 = 33 (Wi — Mai)?
a=1 =1

@ Efron—Morris estimator (= James—Stein estimator when p = 1)
Mem(X) =X (I, — (n—p—1)(X"X)™")

Theorem (Efron and Morris, 1972)
Whenn > p + 2, Mgy is minimax and dominates MMLE(X) = X.

@ Stein (1974): Mg shrinks singular values separately.
n—p—1

o) = (1= "B ) o0
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Risk function (rank 2)
O n= 10,p =3, Ul(M) = 20, 0'3(M) =0
30 H‘ ..................................... .
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® Mgy works well when o5 (M) is small, even if o (M) is large.
» M;s works well if | M||2 = o1(M)?+09(M)? +03(M)? is small.
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Risk function (rank 1)
oen=10,p=3,0:(M)=03(M)=0
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@ Mg\ has constant risk reduction even if o1(M) is large.
@ Therefore, MEM works well when M is close to low-rank.
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Related studies

@ Singular value shrinkage prior (M. and Komaki, 2015)

vector | James—Stein estimator (1961) Stein’s prior (1974)

matrix | Efron—Morris estimator (1972) | M. and Komaki (2015)

@ Matrix quadratic loss and matrix superharmonicity (M. and
Strawderman, 2022)

@ Adaptive estimation via singular value shrinkage (M., 2022)

@ Empirical Bayes matrix completion (M. and Komaki, 2019)

o LEx—: MHZR. /T & BRMM. SHEEIE, 2022.
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Loss estimation framework
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Loss estimation framework

Y ~p(y|6)

o A(y): estimate of
@ \(y): estimate of the loss L(6, 8(y))
» note: loss depends on both # and y
Definition

A loss estimator A (y) is said to dominate another one Aq(y) if

Eo[(M(y) — L(6,8(%)))*] < Eo[(ha(y) — L(6,8(y)))?] (for every 6)
Eo[(M(y) — L(6,0(%)))*] < Eo[(A2(y) — L(6,8(y)))*] (for some 6)

@ (In)admissibility of loss estimators are defined accordingly.
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Loss estimation for a normal mean vector
Y ~ NP(67 Ip)

@ quadratic loss
L(9,6) = |6 - 6]*
@ Stein’s unbiased risk estimate (SURE) for 8(y) = y + g(y)

AV(y) =p+2V-g¥) + lg@)|?

Eo[A"(y)] = Eo[L(6,0(y))]

@ For MLE A(y) =y, SURE is AU(y) = p
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Loss estimation for a normal mean vector
Proposition (Johnstone, 1988)

If p > 5, then SURE A\Y(y) = p for MLE (é(y) = y) is inadmissible
and dominated by A(y) =p — 2(p — 4)||y|| %

Eo(A(y) — L(6,8(v)))* < Eo(\"(y) — L(6,0(v)))*

20

15 1

10| 1

% improvement in MSE
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Loss estimation for a normal mean matrix
Y ~ Np,q(Ma Im Iq)

@ Frobenius loss

L(M, M) = ||M - M|[§ = Y (M;; — My)?

]

Theorem (M., 2023+)

If p > 2¢ + 3, then SURE AY(Y) = pq for MLE (M (Y) = Y) is

inadmissible and dominated by

2(p —2¢ - 2)
q

A(Y) = pg — tr((Y'Y) 7).
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Loss estimation for a normal mean matrix

oo(M) =0 o (M) = 10
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@ large improvement when some singular values of M are small

@ constant reduction of MSE as long as o2(M) =0

— works well when M is close to low-rank

@ (similar to the Efron—Morris estimator)
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Inadmissibility of the corrected AIC



Loss estimation for a predictive distribution

Y ~pyl|6), Y~p{]|0)

e predict Y from Y by a predictive distribution (7 | v)

@ loss: Kullback-Leibler discrepancy

dp(@ | 0),5F | ) = —2 / p(@ | 6)logp(F | )47

(equivalent to Kullback-Leibler divergence up to constant)
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AIC as a loss estimator
e MLE

0(y) = argmaxlogp(y | 0)
@ plug-in predictive distribution

Poug-n(¥ | ¥) = (¥ | 0(y))
@ AIC is an approximately unbiased loss estimator:

AIC = —2logp(y | 0(y)) + 2k

E¢[AIC] ~ E¢[d(p(¥ | 0), Pplug-in (¥ | ¥))]

@ Question: is AIC admissible ??
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Multivariate linear regression model

yi:BTxi-Fé"i, €¢NNq(O,E), izl,...,n

l
Y ~ N, 4(XB,I,,%)

@ Kullback—Leibler discrepancy

4(B,2), (B,9) =2 [ o7 | B,2)logn(F | B, )7
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Known covariance case

Y ~ N, (XB, I,,X)
B=(X"X)'XTy
AIC = —2logp(Y | B, %) + 2pq

Theorem
If p > 2q + 3, then AIC is inadmissible and dominated by

—2q —2)

MAIC = AIC — 22 tr(Z((XB)T(XB))™).
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Unknown covariance case

Y ~ N, (XB,I,,X)

A A

. L 1
B=(X"X)"'X"Y, ¥=-(Y-XB)"(Y - XB)
n

@ AIC: approximately unbiased

A 1
AIC = —2logp(Y | B,X) +2 (pq—i— @)

Eps[AIC] = Eps[d((B, %), (B, %)) +0(1) (n— o)

@ corrected AIC: exactly unbiased

AICc = —2logp(Y | B,5) + — " (pq+ a(q + 1))
n—p—q—1 2

Eps[AICc] = Eps[d((B, X), (B,5))]
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Unknown covariance case

Theorem (M., 2023+)
AIC is inadmissible and dominated by AlCc. J

@ proof: bias-variance decomposition & AICc — AIC = const.

Proposition (Davies et al., 2006)

AlCc is the minimum variance unbiased estimator of the expected
Kullback—Leibler discrepancy.

@ proof: use Lehmann—Scheffé theorem

@ Is AICc admissible ??
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Inadmissibility of the corrected AIC

_ 4n?
= D p)+2>(p‘2q‘2‘

Theorem (M., 2023+)

lfn—p—qg—1>0andc>0,then foranyc € (0,c], AlCc s
inadmissible and dominated by

MAICc = AICc — ctr(3((XB)T(XB))™).

@ In simulation, ¢ = ¢ works well.
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Single response case

Yy Nn(Xﬂa UQIn)
B=(X"X)XTy, &*=|y—XB|*/n

4n®(p — 4)
(n—p)(n—p+2)

Cc=

Corollary (M., 2023+)

Ifn—p—2>0andec >0, then for any c € (0, ¢|, AICc is
inadmissible and dominated by

MAICc = AICc — ¢8| X B|| 2.

@ In simulation, ¢ = ¢ works well.
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Simulation

30/41



Single response

@ X ~N,,(0,I,,I),n=30,p=10,0*=1

; c;é
10 { ---c=0.5¢

% improvement in MSE
% improvement in MSE

@ ¢ = ¢ seems to be a reasonable choice
» We adopt this value in the following experiments
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Single response

® X ~N,,(0,I,,I,),p=10,0*=1
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@ larger improvement for smaller n
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Single response

@ X ~N,,(0,I,,I,),n=30,0*=1
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@ maximum improvement around p = 15
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Single response

® X ~N,,(0,1,,1,), n=230,p=10

% improvement in MSE

@ larger improvement for larger o2 at 8 # 0

34/4



Multi-response

® X ~N,,(0,1,,1,),n=230,p=10,q =2

% improvement in MSE
% improvement in MSE

@ large improvement when some singular values of M are small
@ constant reduction of MSE as long as o2(M) =0
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Multi-response

@ X ~N,,(0,I,,1,),p=10,g=2,2 = I,

% improvement in MSE

% improvement in MSE
|3V
|

20 40 60 80 100
n

@ maximum improvement around n = 40
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Multi-response

® X ~N,,y(0,1,,1,),n=30,¢=2% =1
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@ smaller improvement for larger p
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Multi-response

@ X ~N,,(0,I,,1,),n=30,p=10,g=2,31; =X =1

% improvement in MSE

@ largest improvement for » = 0 (no correlation)
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Multi-response

o X ~Np,,(0,1,,1,),n=30,p=10,% = I,

% improvement in MSE
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Variable selection

@ X ~N,,0,I,I),n=20,p=10,g=1,0%> =1
e 3=1(0.1,0.2,0.3,0.4,0.5,0,0,0,0,0)"

@ k-th submodel: By11=---=8,=0
1 2 3 | 4 5 6 71811910
AIC 89 8 15129 | 352 | 129 | 76 | 76 | 81 | 145
AICc | 277 | 147 |37 |16 | 460 | 44 |15 4 | O 0
MAICc | 248 | 137 |34 | 14 | 492 | 54 |17 | 4 | O 0

@ MAICc selects the true model more frequently than AIC and

AICc
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Summary & future work

Theorem (M., Bernoulli 2023+)
AlCc is inadmissible and dominated by

MAICc = AICc — ctr(S((XB)T (X B))™Y)

as an estimator of the Kullback—Leibler discrepancy.

@ model generalization by asymptotic arguments ??
@ high-dimensional settings ?7?
» cf. Bellec and Zhang (2021), Fujikoshi et al. (2014), Yanagihara
et al. (2015)
@ mis-specified cases ??
» cf. Fujikoshi and Satoh (1997), Reschenhofer (1999)
@ model averaging ?? (e.g. Mallows criterion; Hansen, 2007)
@ other information criteria (e.g. TIC, GIC) ??
@ Bayesian predictive distribution ?? (cf. Kitagawa, 1997)
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