Inadmissibility of the corrected Akaike information criterion

Takeru Matsuda

University of Tokyo, RIKEN Center for Brain Science

Abstract

multivariate linear regression model

$$Y \sim N_{n,q}(XB, I_n, \Sigma)$$

- corrected Akaike information criterion
 - minimum variance unbiased estimator of the expected Kullback–Leibler discrepancy

$$AICc = -2\log p(Y \mid \hat{B}, \hat{\Sigma}) + \frac{2n}{n-p-q-1} \left(pq + \frac{q(q+1)}{2}\right)$$

Theorem (M., Bernoulli 2023+)

AICc is inadmissible and dominated by

$$MAICc = AICc - ctr(\hat{\Sigma}((X\hat{B})^{\top}(X\hat{B}))^{-1})$$

as an estimator of the Kullback-Leibler discrepancy.

Contents

- Stein's paradox
- Loss estimation framework
- Inadmissibility of AICc
- Simulation

Stein's paradox

Estimation of normal mean vector

$$X \sim N_n(\mu, I_n)$$

- estimate μ based on X by some estimator $\hat{\mu} = \hat{\mu}(x)$
- maximum likelihood estimator (MLE): $\hat{\mu}_{\mathrm{MLE}}(x) = x$
- Is MLE the best estimator ??
 - → No !! (Stein's paradox, 1956)
- Statistical decision theory provides a framework to compare estimators

Loss and risk

- loss function $L(\mu,\hat{\mu})$: discrepancy between the estimate $\hat{\mu}$ and the true value μ
- e.g. quadratic loss

$$L(\mu, \hat{\mu}) = \|\hat{\mu} - \mu\|^2$$

• risk function $R(\mu,\hat{\mu})$: average loss of an estimator $\hat{\mu}=\hat{\mu}(x)$

$$R(\mu, \hat{\mu}) = E_{\mu}[L(\mu, \hat{\mu}(x))] = \int L(\mu, \hat{\mu}(x))p(x \mid \mu)dx$$

- In statistical decision theory, estimators are compared with the risk functions.
 - smaller risk is preferable

Dominance

Definition

An estimator $\hat{\mu}_1$ is said to dominate another estimator $\hat{\mu}_2$ if

$$R(\mu, \hat{\mu}_1) \le R(\mu, \hat{\mu}_2)$$
 (for every μ)
 $R(\mu, \hat{\mu}_1) < R(\mu, \hat{\mu}_2)$ (for some μ)

Admissibility and minimaxity

Definition

An estimator $\hat{\mu}$ is said to be admissible if no estimator dominates $\hat{\mu}$.

Definition

An estimator $\hat{\mu}$ is said to be inadmissible if there exists an estimator that dominates $\hat{\mu}$.

Definition

An estimator $\hat{\mu}^*$ is said to be minimax if it minimizes the maximum risk:

$$\sup_{\boldsymbol{\mu}} R(\boldsymbol{\mu}, \hat{\boldsymbol{\mu}}^*) = \inf_{\hat{\boldsymbol{\mu}}} \sup_{\boldsymbol{\mu}} R(\boldsymbol{\mu}, \hat{\boldsymbol{\mu}})$$

Stein's paradox

$$X \sim N_n(\mu, I_n)$$

- estimate μ based on X under quadratic loss $\|\hat{\mu} \mu\|^2$
- Maximum likelihood estimator $\hat{\mu}_{\text{MLE}}(x) = x$ is minimax.

Theorem (Stein, 1956)

When $n \geq 3$, $\hat{\mu}_{\text{MLE}}(x) = x$ is inadmissible.

- Shrinkage estimators dominate $\hat{\mu}_{\mathrm{MLE}}$.
- e.g. James-Stein estimator (James and Stein, 1961)

$$\hat{\mu}_{\rm JS}(x) = \left(1 - \frac{n-2}{\|x\|^2}\right) x$$

$$E\|\hat{\mu}_{JS}(x) - \mu\|^2 \le E\|\hat{\mu}_{MLE}(x) - \mu\|^2 = n$$

JS shrinks x toward the origin.

Risk function (n = 10)

quadratic risk $\mathbf{E}\|\hat{\mu} - \mu\|^2$ (n = 10)

• JS attains large risk reduction when μ is close to the origin

Estimation of normal mean matrix

$$X \sim N_{n,p}(M, I_n, I_p) \quad \Leftrightarrow \quad X_{ai} \sim N(M_{ai}, 1)$$

estimate M based on X under Frobenius loss

$$L(M, \hat{M}) = \|\hat{M} - M\|_{\mathrm{F}}^2 = \sum_{i=1}^{n} \sum_{j=1}^{p} (\hat{M}_{ai} - M_{ai})^2$$

ullet Efron–Morris estimator (= James–Stein estimator when p=1)

$$\hat{M}_{EM}(X) = X \left(I_p - (n - p - 1)(X^{\top}X)^{-1} \right)$$

Theorem (Efron and Morris, 1972)

When $n \geq p+2$, \hat{M}_{EM} is minimax and dominates $\hat{M}_{\mathrm{MLE}}(X) = X$.

• Stein (1974): $\hat{M}_{\rm EM}$ shrinks singular values separately.

$$\sigma_i(\hat{M}_{ ext{EM}}) = \left(1 - rac{n-p-1}{\sigma_i(X)^2}
ight)\sigma_i(X)$$

Risk function (rank 2)

• $n = 10, p = 3, \sigma_1(M) = 20, \sigma_3(M) = 0$

- \hat{M}_{EM} works well when $\sigma_2(M)$ is small, even if $\sigma_1(M)$ is large.
 - \hat{M}_{JS} works well if $\|M\|_{\mathrm{F}}^2 = \sigma_1(M)^2 + \sigma_2(M)^2 + \sigma_3(M)^2$ is small.

Risk function (rank 1)

• $n = 10, p = 3, \sigma_2(M) = \sigma_3(M) = 0$

- $\hat{M}_{\rm EM}$ has constant risk reduction even if $\sigma_1(M)$ is large.
- Therefore, $\hat{M}_{\rm EM}$ works well when M is close to low-rank.

Related studies

• Singular value shrinkage prior (M. and Komaki, 2015)

vector	James-Stein estimator (1961)	Stein's prior (1974)
matrix	Efron–Morris estimator (1972)	M. and Komaki (2015)

- Matrix quadratic loss and matrix superharmonicity (M. and Strawderman, 2022)
- Adaptive estimation via singular value shrinkage (M., 2022)
- Empirical Bayes matrix completion (M. and Komaki, 2019)

● レビュー:松田孟留.縮小推定と優調和性.応用数理, 2022.

Loss estimation framework

Loss estimation framework

$$Y \sim p(y \mid \theta)$$

- $\hat{\theta}(y)$: estimate of θ
- $\lambda(y)$: estimate of the loss $L(\theta, \hat{\theta}(y))$
 - note: loss depends on both \(\theta \) and \(y \)

Definition

A loss estimator $\lambda_1(y)$ is said to dominate another one $\lambda_2(y)$ if

$$\mathrm{E}_{\theta}[(\lambda_1(y) - L(\theta, \hat{\theta}(y)))^2] \leq \mathrm{E}_{\theta}[(\lambda_2(y) - L(\theta, \hat{\theta}(y)))^2] \quad \text{(for every } \theta)$$

$$E_{\theta}[(\lambda_1(y) - L(\theta, \hat{\theta}(y)))^2] < E_{\theta}[(\lambda_2(y) - L(\theta, \hat{\theta}(y)))^2]$$
 (for some θ)

(In)admissibility of loss estimators are defined accordingly.

Loss estimation for a normal mean vector

$$Y \sim N_p(\theta, I_p)$$

quadratic loss

$$L(\theta, \hat{\theta}) = \|\hat{\theta} - \theta\|^2$$

• Stein's unbiased risk estimate (SURE) for $\hat{\theta}(y) = y + g(y)$

$$\lambda^{U}(y) = p + 2\nabla \cdot g(y) + ||g(y)||^{2}$$

$$\mathrm{E}_{\theta}[\lambda^{\mathrm{U}}(y)] = \mathrm{E}_{\theta}[L(\theta, \hat{\theta}(y))]$$

ullet For MLE $\hat{ heta}(y)=y,$ SURE is $\lambda^{\mathrm{U}}(y)=p$

Loss estimation for a normal mean vector

Proposition (Johnstone, 1988)

If $p\geq 5$, then SURE $\lambda^{\mathrm{U}}(y)=p$ for MLE $(\hat{\theta}(y)=y)$ is inadmissible and dominated by $\lambda(y)=p-2(p-4)\|y\|^{-2}$:

$$E_{\theta}(\lambda(y) - L(\theta, \hat{\theta}(y)))^2 \le E_{\theta}(\lambda^{U}(y) - L(\theta, \hat{\theta}(y)))^2$$

Loss estimation for a normal mean matrix

$$Y \sim N_{p,q}(M, I_p, I_q)$$

Frobenius loss

$$L(M, \hat{M}) = ||\hat{M} - M||_{\mathrm{F}}^2 = \sum_{i,j} (\hat{M}_{ij} - M_{ij})^2$$

Theorem (M., 2023+)

If $p \geq 2q+3$, then SURE $\lambda^{\rm U}(Y)=pq$ for MLE $(\hat M(Y)=Y)$ is inadmissible and dominated by

$$\lambda(Y) = pq - \frac{2(p - 2q - 2)}{q} \operatorname{tr}((Y^{\top}Y)^{-1}).$$

Loss estimation for a normal mean matrix

- ullet large improvement when some singular values of M are small
- constant reduction of MSE as long as $\sigma_2(M) = 0$
 - ightarrow works well when M is close to low-rank
- (similar to the Efron–Morris estimator)

Inadmissibility of the corrected AIC

Loss estimation for a predictive distribution

$$Y \sim p(y \mid \theta), \quad \widetilde{Y} \sim p(\widetilde{y} \mid \theta)$$

- predict \widetilde{Y} from Y by a predictive distribution $\widehat{p}(\widetilde{y} \mid y)$
- loss: Kullback–Leibler discrepancy

$$d(p(\widetilde{y} \mid \theta), \hat{p}(\widetilde{y} \mid y)) = -2 \int p(\widetilde{y} \mid \theta) \log \hat{p}(\widetilde{y} \mid y) d\widetilde{y}$$

(equivalent to Kullback-Leibler divergence up to constant)

AIC as a loss estimator

MLE

$$\hat{\theta}(y) = \operatorname*{argmax}_{\theta} \log p(y \mid \theta)$$

plug-in predictive distribution

$$\hat{p}_{\text{plug-in}}(\widetilde{y} \mid y) = p(\widetilde{y} \mid \hat{\theta}(y))$$

AIC is an approximately unbiased loss estimator:

$$AIC = -2\log p(y \mid \hat{\theta}(y)) + 2k$$

$$\mathbf{E}_{\boldsymbol{\theta}}[\mathrm{AIC}] \approx \mathbf{E}_{\boldsymbol{\theta}}[d(p(\widetilde{\boldsymbol{y}} \mid \boldsymbol{\theta}), \hat{p}_{\mathrm{plug-in}}(\widetilde{\boldsymbol{y}} \mid \boldsymbol{y}))]$$

Question: is AIC admissible ??

Multivariate linear regression model

$$y_i = B^{\top} x_i + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{N}_q(0, \Sigma), \quad i = 1, \dots, n$$

$$\downarrow$$

$$Y \sim \mathrm{N}_{n,q}(XB, I_n, \Sigma)$$

Kullback–Leibler discrepancy

$$d((B, \Sigma), (\hat{B}, \hat{\Sigma})) = -2 \int p(\widetilde{Y} \mid B, \Sigma) \log p(\widetilde{Y} \mid \hat{B}, \hat{\Sigma}) d\widetilde{Y}$$

Known covariance case

$$Y \sim N_{n,q}(XB, I_n, \Sigma)$$

$$\hat{B} = (X^{\top}X)^{-1}X^{\top}Y$$

$$AIC = -2\log p(Y \mid \hat{B}, \Sigma) + 2pq$$

Theorem

If $p \geq 2q+3$, then AIC is inadmissible and dominated by

$$MAIC = AIC - \frac{2(p-2q-2)}{q} tr(\Sigma((X\hat{B})^{\top}(X\hat{B}))^{-1}).$$

Unknown covariance case

$$Y \sim N_{n,q}(XB, I_n, \Sigma)$$

$$\hat{B} = (X^{\top}X)^{-1}X^{\top}Y, \quad \hat{\Sigma} = \frac{1}{n}(Y - X\hat{B})^{\top}(Y - X\hat{B})$$

AIC: approximately unbiased

$$\begin{aligned} \text{AIC} &= -2\log p(Y \mid \hat{B}, \hat{\Sigma}) + 2\left(pq + \frac{q(q+1)}{2}\right) \\ \text{E}_{B,\Sigma}[\text{AIC}] &= \text{E}_{B,\Sigma}[d((B,\Sigma), (\hat{B}, \hat{\Sigma}))] + o(1) \quad (n \to \infty) \end{aligned}$$

corrected AIC: exactly unbiased

$$AICc = -2\log p(Y \mid \hat{B}, \hat{\Sigma}) + \frac{2n}{n-p-q-1} \left(pq + \frac{q(q+1)}{2}\right)$$

$$\mathrm{E}_{B,\Sigma}[\mathrm{AICc}] = \mathrm{E}_{B,\Sigma}[d((B,\Sigma),(\hat{B},\hat{\Sigma}))]$$

Unknown covariance case

Theorem (M., 2023+)

AIC is inadmissible and dominated by AICc.

• proof: bias-variance decomposition & AICc - AIC = const.

Proposition (Davies et al., 2006)

AICc is the minimum variance unbiased estimator of the expected Kullback–Leibler discrepancy.

- proof: use Lehmann–Scheffé theorem
- Is AICc admissible ??

Inadmissibility of the corrected AIC

$$\bar{c} = \frac{4n^2}{(n-p)(q(n-p)+2)} \left(p - 2q - 2 - \frac{q^2 + q - 2}{n-p-q-1} \right)$$

Theorem (M., 2023+)

If n-p-q-1>0 and $\bar c>0$, then for any $c\in(0,\bar c]$, AICc is inadmissible and dominated by

$$MAICc = AICc - ctr(\hat{\Sigma}((X\hat{B})^{\top}(X\hat{B}))^{-1}).$$

• In simulation, $c = \bar{c}$ works well.

Single response case

$$y \sim \mathcal{N}_n(X\beta, \sigma^2 I_n)$$

$$\hat{\beta} = (X^\top X)^{-1} X^\top y, \quad \hat{\sigma}^2 = \|y - X\hat{\beta}\|^2 / n$$

$$\bar{c} = \frac{4n^2(p-4)}{(n-p)(n-p+2)}$$

Corollary (M., 2023+)

If n-p-2>0 and $\bar{c}>0$, then for any $c\in(0,\bar{c}],$ AICc is inadmissible and dominated by

$$MAICc = AICc - c\hat{\sigma}^2 ||X\hat{\beta}||^{-2}.$$

• In simulation, $c = \bar{c}$ works well.

Simulation

•
$$X \sim N_{n,p}(0, I_n, I_p), n = 30, p = 10, \sigma^2 = 1$$

- $c = \bar{c}$ seems to be a reasonable choice
 - We adopt this value in the following experiments

• $X \sim N_{n,p}(0, I_n, I_p), p = 10, \sigma^2 = 1$

• larger improvement for smaller n

• $X \sim N_{n,p}(0, I_n, I_p), n = 30, \sigma^2 = 1$

• maximum improvement around p=15

• $X \sim N_{n,p}(0, I_n, I_p), n = 30, p = 10$

• larger improvement for larger σ^2 at $\beta \neq 0$

• $X \sim N_{n,p}(0, I_n, I_p), n = 30, p = 10, q = 2$

- ullet large improvement when some singular values of M are small
- constant reduction of MSE as long as $\sigma_2(M) = 0$

• $X \sim N_{n,p}(0, I_n, I_p), p = 10, q = 2, \Sigma = I_2$

• maximum improvement around n=40

• $X \sim N_{n,p}(0, I_n, I_p), n = 30, q = 2, \Sigma = I_2$

smaller improvement for larger p

• $X \sim N_{n,p}(0, I_n, I_p)$, n = 30, p = 10, q = 2, $\Sigma_{11} = \Sigma_{22} = 1$

• largest improvement for r = 0 (no correlation)

• $X \sim N_{n,p}(0, I_n, I_p), n = 30, p = 10, \Sigma = I_q$

Variable selection

•
$$X \sim N_{n,p}(0, I_n, I_p), n = 20, p = 10, q = 1, \sigma^2 = 1$$

- $\theta = (0.1, 0.2, 0.3, 0.4, 0.5, 0, 0, 0, 0, 0)^{\top}$
- k-th submodel: $\beta_{k+1} = \cdots = \beta_p = 0$

	1	2	3	4	5	6	7	8	9	10
AIC	89	8	15	29	352	129	76	76	81	145
AICc	277	147	37	16	460	44	15	4	0	0
MAICc	248	137	34	14	492	54	17	4	0	0

 \bullet MAICc selects the true model more frequently than AIC and AICc

Summary & future work

Theorem (M., Bernoulli 2023+)

AICc is inadmissible and dominated by

$$\mathrm{MAICc} = \mathrm{AICc} - c\mathrm{tr}(\hat{\Sigma}((X\hat{B})^{\top}(X\hat{B}))^{-1})$$

as an estimator of the Kullback-Leibler discrepancy.

- model generalization by asymptotic arguments ??
- high-dimensional settings ??
 - cf. Bellec and Zhang (2021), Fujikoshi et al. (2014), Yanagihara et al. (2015)
- mis-specified cases ??
 - cf. Fujikoshi and Satoh (1997), Reschenhofer (1999)
- model averaging ?? (e.g. Mallows criterion; Hansen, 2007)
- other information criteria (e.g. TIC, GIC) ??
- Bayesian predictive distribution ?? (cf. Kitagawa, 1997)