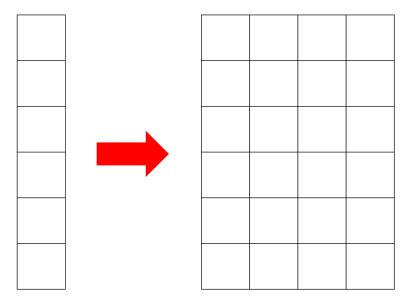
Adapting to arbitrary quadratic loss via singular value shrinkage

Takeru Matsuda

RIKEN Center for Brain Science

June 4, 2022 @ EcoSta 2022

Shrinkage estimation: from vector to matrix



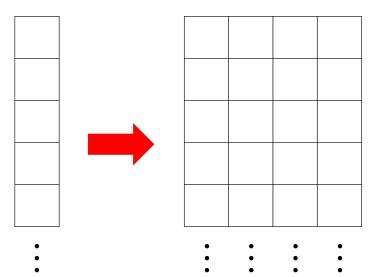
Shrinkage estimation: from vector to matrix

- Efron and Morris (1972): extension of James-Stein to matrix
- M. and Komaki (2015): Bayesian counterpart of Efron-Morris
- M. and Strawderman (2022): minimaxity of Efron–Morris under matrix quadratic loss

vector	matrix
James-Stein estimator	Efron–Morris estimator
$\hat{\mu}_{\rm JS} = \left(1 - \frac{n-2}{\ x\ ^2}\right) x$	$\hat{M}_{\text{EM}} = X \left(I_p - (n - p - 1)(X^{T}X)^{-1} \right)$
Stein's prior	singular value shrinkage prior
$\pi_{S}(\mu) = \mu ^{-(n-2)}$	$\pi_{\text{SVS}}(M) = \det(M^{\top}M)^{-(n-p-1)/2}$

How about nonparametric (infinite-dimensional) estimation ??

Sequence estimation: from univariate to multivariate



Abstract

- Efromovich and Pinsker (1984): The blockwise James-Stein estimator is adaptive minimax over the Sobolev ellipsoids.
 - "crowning result for linear estimation" (Johnstone, 2012)

1

- This study: The blockwise Efron-Morris estimator is adaptive minimax over the multivariate Sobolev ellipsoids.
 - adaptation not only to unknown smoothness and scale but also to arbitrary quadratic loss

	parametric	nonparametric
vector	James-Stein estimator	blockwise JS
matrix	Efron–Morris estimator	blockwise EM

arXiv:2205.13840

Background:

Adaptive minimaxity of blockwise James–Stein estimator

Problem setting

Gaussian sequence model

$$y_i = \theta_i + \varepsilon \xi_i, \quad \xi_i \sim N(0, 1), \quad i = 1, 2, \cdots$$

• estimation of $\theta = (\theta_i)$ from $y = (y_i)$ under the quadratic loss:

$$L(\theta, \hat{\theta}) = ||\hat{\theta} - \theta||^2 = \sum_{i} (\hat{\theta}_i - \theta_i)^2$$

risk function

$$R(\theta, \hat{\theta}) = E_{\theta}[L(\theta, \hat{\theta})]$$

- canonical model in nonparametric estimation
 - nonparametric regression, density estimation, ...

Sobolev ellipsoid

Sobolev ellipsoid ($\beta > 0, Q > 0$)

$$\Theta(\beta, Q) = \left\{ \theta = (\theta_i) \, \middle| \, \sum_{i=1}^{\infty} a_{\beta,i}^2 \theta_i^2 \le Q \right\}$$

$$a_{\beta,i} = \begin{cases} i^{\beta} & (i : \text{even}) \\ (i-1)^{\beta} & (i : \text{odd}) \end{cases}$$

• A function $f:[0,1]\to\mathbb{R}$ belongs to the Sobolev class iff its Fourier coefficients belong to $\Theta(\beta,Q)$

Notions of minimaxity

• We consider the asymptotics $\varepsilon \to 0$ and write $a \sim b$ if $a/b \to 1$

Definition

 $\hat{\theta}_*$: asymptotically minimax on Θ

$$\Leftrightarrow \sup_{\theta \in \Theta} R(\theta, \hat{\theta}_*) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta} R(\theta, \hat{\theta})$$

Definition

 $\hat{\theta}_*$: adaptive minimax over $C = \{\Theta\}$

 $\Leftrightarrow \hat{\theta}_*$: asymptotically minimax on every $\Theta \in C$

- note: We focus on exact minimaxity in this study
 - stronger than rate-minimaxity

Pinsker's theorem

Theorem (Pinsker, 1980)

For a constant $\kappa = \kappa(\varepsilon, \beta, Q)$, the linear estimator

$$\hat{\theta}_{\mathrm{P},i} = (1 - \kappa a_i)_+ y_i$$

is asymptotically minimax on $\Theta(\beta, Q)$:

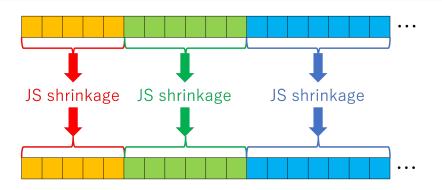
$$\sup_{\theta \in \Theta(\beta,Q)} R(\theta,\hat{\theta}_{\mathrm{P}}) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta(\beta,Q)} R(\theta,\hat{\theta}) \sim P(\beta,Q) \varepsilon^{4\beta/(2\beta+1)}$$

• Pinsker estimator requires the knowledge of β and Q...

Blockwise James-Stein estimator

Blockwise James–Stein estimator $\hat{\theta}_{\mathrm{BJS}}$

- Take sufficiently large N (e.g. ε^{-2})
- Partition $\{1, 2, ..., N\}$ into consecutive blocks
- apply James–Stein shrinkage to each block



Adaptive minimaxity of blockwise JS

Theorem (Efromovich and Pinsker, 1984)

The blockwise James–Stein estimator $\hat{\theta}_{\rm BJS}$ with the weakly geometric blocks is adaptive minimax over the Sobolev ellipsoids:

$$\sup_{\theta \in \Theta(\beta, Q)} R(\theta, \hat{\theta}_{BJS}) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta(\beta, Q)} R(\theta, \hat{\theta}) \sim P(\beta, Q) \varepsilon^{4\beta/(2\beta+1)}$$

for every β and Q.

- proof: use Pinsker's theorem and oracle inequality for James–Stein estimator
 - Pinsker estimator is linear & JS attains almost the same risk with linear estimators
- Blockwise JS does not require the knowledge of β and Q!!

Efron–Morris estimator and its oracle inequality

Efron-Morris estimator

$$X \sim N_{n,p}(M, I_n, I_p) \Leftrightarrow X_{ai} \sim N(M_{ai}, 1)$$

• estimation of *M* from *X* under the Frobenius loss:

$$||\hat{M} - M||_{F}^{2} = \sum_{a=1}^{n} \sum_{i=1}^{p} (\hat{M}_{ai} - M_{ai})^{2}$$

• Efron–Morris estimator (= James–Stein estimator when p = 1)

$$\hat{M}_{EM}(X) = X (I_p - (n - p - 1)(X^{T}X)^{-1})$$

Theorem (Efron and Morris, 1972)

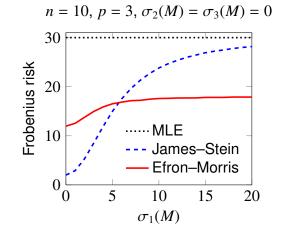
When $n \ge p + 2$, \hat{M}_{EM} is minimax and dominates $\hat{M}_{MLE}(X) = X$.

Singular value shrinkage of Efron-Morris

• Stein (1974): $\hat{M}_{\rm EM}$ shrinks singular values towards zero.

$$\sigma_i(\hat{M}_{EM}) = \left(1 - \frac{n - p - 1}{\sigma_i(X)^2}\right)\sigma_i(X)$$

 $\rightarrow \hat{M}_{\rm EM}$ works well when M is close to low-rank!!



June 4, 2022 @ EcoSta 2022

Minimaxity of EM under matrix quadratic loss

• How about matrix quadratic loss?

$$L(M, \hat{M}) = (\hat{M} - M)^{\top} (\hat{M} - M) \in \mathbb{R}^{p \times p}$$

Theorem (M. and Strawderman, Biometrika 2022)

When $n \ge p + 2$, \hat{M}_{EM} is minimax and dominates MLE:

$$\mathsf{E}_M[(\hat{M}_{\mathsf{EM}} - M)^{\top}(\hat{M}_{\mathsf{EM}} - M)] \leq nI_p$$

• Therefore, $\hat{M}_{\rm EM}$ is minimax under arbitrary quadratic loss:

$$E_M[\operatorname{tr}(\hat{M}_{\mathrm{EM}} - M)Q(\hat{M}_{\mathrm{EM}} - M)^{\top}] \le n\operatorname{tr}(Q), \quad Q > O$$

- $Q = I_p$: Frobenius loss
- $Q = cc^{\mathsf{T}}$: $||\hat{M}c Mc||^2$ (c = column weights)

Oracle inequality for Efron–Morris estimator

- $\hat{M}_C = XC$: linear estimator
- For fixed M,

$$\mathrm{E}_{M}[(\hat{M}_{C_{*}}-M)^{\top}(\hat{M}_{C_{*}}-M)] \leq \mathrm{E}_{M}[(\hat{M}_{C}-M)^{\top}(\hat{M}_{C}-M)]$$

for every C, where $C_* = C_*(M) := (M^T M + nI_p)^{-1} M^T M$.

 $\rightarrow \hat{M}_{C_*}$: linear oracle

Theorem

$$\begin{aligned} \mathbf{E}_{M}[(\hat{M}_{\text{EM}} - M)^{\top}(\hat{M}_{\text{EM}} - M)] \\ &\leq \mathbf{E}_{M}[(\hat{M}_{C_{*}} - M)^{\top}(\hat{M}_{C_{*}} - M)] + 2(p+1)I_{p} \end{aligned}$$

• $\hat{M}_{\rm FM}$ attains almost the same risk with linear oracle!!

Oracle inequality for Efron-Morris estimator

Corollary

$$E_{M}[(\hat{M}_{EM} - M)Q(\hat{M}_{EM} - M)^{\top}]$$

$$\leq E_{M}[(\hat{M}_{C_{*}} - M)Q(\hat{M}_{C_{*}} - M)^{\top}] + 2(p+1)\operatorname{tr}(Q)$$

- $\hat{M}_{\rm EM}$ attains almost the same risk with linear oracle under arbitrary quadratic loss!!
 - key to adaptive minimaxity of blockwise EM

Adaptive minimaxity of blockwise Efron–Morris estimator

Problem setting

Multivariate Gaussian sequence model $(p \ge 2)$

$$y_i = \theta_i + \varepsilon \xi_i, \quad \xi_i \sim N_p(0, I_p), \quad i = 1, 2, \cdots$$

- estimation of $\theta = (\theta_i)$ from $y = (y_i)$ under Q-quadratic loss
 - cf. weighted L^2 loss in function estimation

$$L_{Q}(\theta, \hat{\theta}) = \sum_{i} (\hat{\theta}_{i} - \theta_{i})^{\top} Q(\hat{\theta}_{i} - \theta_{i}), \quad Q > O$$

risk function

$$R_Q(\theta, \hat{\theta}) = E_{\theta}[L_Q(\theta, \hat{\theta})]$$

Multivariate Sobolev ellipsoid

Multivariate Sobolev class ($\beta > 0, L > O$)

$$W(\beta, L) = \left\{ f : [0, 1] \to \mathbb{R}^p \, \middle| \, \int_0^1 f^{(\beta)}(x)^{\mathsf{T}} L^{-2} f^{(\beta)}(x) dx \le 1 \right\}$$

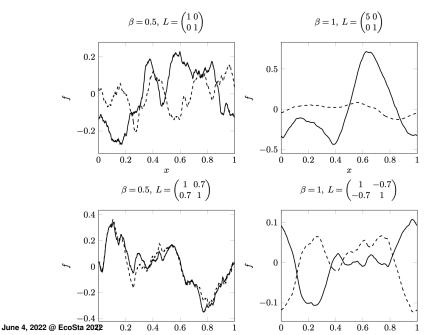
- β : smoothness of f
- *L*: scale & correlation between f_1, \ldots, f_p

Multivariate Sobolev ellipsoid ($\beta > 0, Q > O$)

$$\Theta(\beta, Q) = \left\{ \theta = (\theta_1, \theta_2, \cdots) \mid \sum_{i=1}^{\infty} a_{\beta, i}^2 \theta_i^{\mathsf{T}} Q^{-1} \theta_i \le 1 \right\}$$

• $f \in W(\beta, L) \Leftrightarrow \theta \in \Theta(\beta, L^2/\pi^{2\beta})$ (Fourier coefficients)

Functions in multivariate Sobolev class



Multivariate extension of Pinsker's theorem

- S_+ : projection of $S \in \mathbb{R}^{p \times p}$ onto the positive semidefinite cone
 - truncation of negative eigenvalues

Theorem

For a constant $\kappa = \kappa(\varepsilon, \beta, Q)$, the linear estimator

$$\hat{\theta}_{\mathrm{P},i} = (I_p - a_{\beta,i} \kappa Q^{-1})_+ y_i$$

is asymptotically minimax under L_Q on $\Theta(\beta, Q)$:

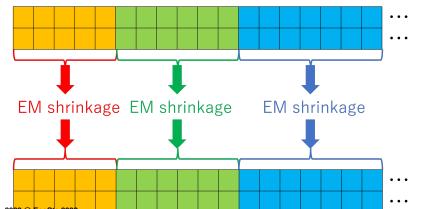
$$\sup_{\theta \in \Theta(\beta,Q)} R_Q(\theta,\hat{\theta}_P) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta(\beta,Q)} R_Q(\theta,\hat{\theta}) \sim P(\beta,Q) \varepsilon^{4\beta/(2\beta+1)}.$$

• generalization of Pinsker's theorem to $p \ge 2$

Blockwise Efron-Morris estimator

Blockwise Efron–Morris estimator $\hat{\theta}_{\text{BEM}}$

- Take sufficiently large N (e.g. ε^{-2})
- Partition {1, 2, ..., N} into consecutive blocks
- apply Efron–Morris shrinkage to each block matrix



Adaptive minimaxity of blockwise EM

Theorem

The blockwise Efron–Morris estimator $\hat{\theta}_{\text{BEM}}$ is adaptive minimax over the multivariate Sobolev ellipsoids:

$$\sup_{\theta \in \Theta(\beta, Q)} R_Q(\theta, \hat{\theta}_{\text{BEM}}) \sim \inf_{\hat{\theta}} \sup_{\theta \in \Theta(\beta, Q)} R_Q(\theta, \hat{\theta}) \sim P(\beta, Q) \varepsilon^{4\beta/(2\beta+1)}$$

for every β and Q.

- generalization of Efromovich and Pinsker (1984) to $p \ge 2$
- proof: use oracle inequality for Efron–Morris estimator
- adaptation not only to smoothness and scale but also to arbitrary quadratic loss!!
 - due to singular value shrinkage of Efron–Morris estimator

Summary

- Efromovich and Pinsker (1984): The blockwise James-Stein estimator is adaptive minimax over the Sobolev ellipsoids.
 - "crowning result for linear estimation" (Johnstone, 2012)

1

- This study: The blockwise Efron-Morris estimator is adaptive minimax over the multivariate Sobolev ellipsoids.
 - adaptation not only to unknown smoothness and scale but also to arbitrary quadratic loss

	parametric	nonparametric
vector	James-Stein estimator	blockwise JS
matrix	Efron–Morris estimator	blockwise EM

arXiv:2205.13840