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Handouts & Announcements

Handouts:

Slides (this one)

Solutions of the midterm exam

Copy of §6.5 and §6.14 of PRP

Note:

Your answer sheets of the midterm exam will be returned today unless
you took an additional exam (for conference attendee or sick leave).
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Schedule

Apr 6 Overview

Apr 13 Simple random walk

Apr 20 Generating functions

Apr 27 Markov chain

May 11 Continuous-time Markov chain

May 18 Review

May 25 (midterm exam)

June 8 Markov chain Monte Carlo

June 15 Stationary processes

June 22 Martingales

June 29 Queues

July 6 Diffusion processes

July 13 Review

July 20 (final exam) ← the date has been decided.
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Outline today

.

. .
1 Remarks about the midterm exam

.

. .

2 Markov chain Monte Carlo
Detailed balance equation
Gibbs sampler
Metropolis-Hastings algorithm

.

. .

3 Recommended problems
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How to score

I sincerely apologize that the problems Q1-(c) and Q4-(b) were very
difficult.

So I decided that the full marks is 70 marks.

Therefore the final score will be based on

40%× 10

7
× (midterm exam) + 60%× (final exam)

The score of Q5 of the midterm exam is either α, β, or 0, where α
and β are functions of the total score of Q1 to Q4, and satisfy
0 ≤ β ≤ α ≤ 10. I have not decided the specific function yet...

The final exam will consist of easier questions...
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Q5 of the midterm exam

Research interest

statistics, numerical algorithm, optimization, intelligent systems,
music data, computational linguistics, causal discovery, mathematical
finance, computer graphics, random graph, economics, data structure,
hybrid system, brain consciousness.

Comments on the lecture (selected)

loud

explanation could be more detailed

FAQ

easier exercises

more proofs
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Review: Stationary distribution

Let pij denote the transition probability (from i to j) of a Markov chain.

.

Definition (reminder)

.

.

.

. ..

.

.

A mass function π = (πi )i∈S is called the stationary distribution of the
Markov chain if ∑

i∈S

πipij = πj for all j ∈ S .
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Detailed balance equation

.

Definition

.

.

.

. ..

.

.

A Markov chain is called reversible if it has the stationary distribution
π = (πi )i∈S satisfying

πipij = πjpji for all i , j ∈ S .

This equation is called the detailed balance equation.
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Detailed balance implies stationarity

.

Lemma

.

.

.

. ..

.

.

If a mass function πi satisfies the detailed balance equation, then πi is a
stationary distribution.

Proof: ∑
i

πipij =
∑

i

πjpji (detailed balance)

= πj

∑
i

pji

= πj (property of transition matrix)
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Exercises

.

Exercise 1

.

.

.

. ..

.

.

Let P =

 0 1 0
1/6 1/2 1/3
0 2/3 1/3

 and π = (1/10, 6/10, 3/10).

Show that the detailed balance equation is satisfied.

.

Exercise 2

.

.

.

. ..

. .

Let P =

a b c
c a b
b c a

 and π = (1/3, 1/3, 1/3), where a, b, c ≥ 0 and

a + b + c = 1.

.

.

.

1 Show that π is a stationary distribution.

.

.

.

2 Determine the condition that the detailed balance equation holds.

Note: a matrix P is called doubly stochastic if all the row sums and
column sums are 1.
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Markov Chain Monte Carlo (MCMC)

We begin with an example.

.

A toy example

.

.

.

. ..

.

.

Let Θ be the set of all strings of length 20 that consist of four letters ‘A’,
‘G’, ‘C’, ‘T’. For example,

“AGATACACATTTAACGGCAT” ∈ Θ.

Define a probability mass function on Θ by

π(θ) =
2c(θ)

Z
, Z =

∑
θ∈Θ

2c(θ),

where c(θ) is the number of “CAT” in θ. Find the expected number∑
θ∈Θ

c(θ)π(θ).
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MCMC

Our target is
∑

θ∈Θ c(θ)π(θ).

Since |Θ| = 420 ' 1012, computation of the sum is not so easy.

Instead, construct a Markov chain in the following manner.

.

Gibbs sampler for the above problem

.

.

.

. ..

.

.

.

.

.

1 Determine an initial state θ(0). For example,
θ(0) =“AAAAAAAAAAAAAAAAAAAA”.

.

.

.

2 Choose a site from the 20 at random, and replace it with a letter in
such a way that the detailed balance equation is satisfied. Repeat this
procedure N times. Let θ(n) for n = 1, . . . , N be the obtained
sequence.

.

.

.

3 An estimate is (1/N)
∑N

n=1 c(θ(n)).
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MCMC

For example, if

θ =“AGATACACATTTAACGGCAT”

and the 2nd letter is chosen (with probability 1/20), then move from θ to
φ in the following probability:

φ 2c(φ) probability

“AAATACACATTTAACGGCAT” 4 1/5
“AGATACACATTTAACGGCAT” 4 1/5
“ACATACACATTTAACGGCAT” 8 2/5
“ATATACACATTTAACGGCAT” 4 1/5

The detailed balance equation is satisfied. It will be checked later in more
general form.
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A result

Sorry, I had no time to implement it.
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Ising model

Here is another example.

.

Example (Ising model)

.

.

.

. ..

.

.

Let Θ = {−1, 1}n×n. The Ising model is defined by

π(θ) =
π∗(θ)

Z
, π∗(θ) = exp

β
∑

(v ,w):v∼w

θvθw

 , θ ∈ Θ.

Here v ∼ w means that v and w are “adjacent” in the n × n lattice, Z is
defined by Z =

∑
θ∈Θ π∗(θ), and β ∈ R is a given parameter.

How to generate a random sample from π(θ)?

It is hopeless to calculate Z since |Θ| = 2n2
.

→ MCMC avoids such computation.
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Output of MCMC

Random samples from the Ising model are shown.
The size of the lattice is 100× 100.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beta= 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beta= 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

beta= −0.4

β = 0.4 β = 0 β = −0.4
(uniform distribution)

16 / 28



Idea of MCMC

Purpose: generate a sample from πi = π∗
i /Z , where Z =

∑
i∈S π∗

i .

Assumption: π∗
i is easily calculated, but Z is not.

Solution: construct a Markov chain with the stationary distribution π.

.

Example (cont.)

.

.

.

. ..

.

.

For the Ising model, we used the following Markov chain:

Choose v ∈ V = {1, . . . , n}2 randomly.

Choose θ̃v ∈ {−1, 1} with the probability

P(θ̃v = ±1) =
e±β

P

w∼v θw

eβ
P

w∼v θw + e−β
P

w∼v θw
.

and θ̃w = θw for all w 6= v .

Move from θ to θ̃.

This is an example of the Gibbs sampler. → next slide
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Gibbs sampler

The state space is Θ = SV , where S is “local state space” and V is a
finite set.

Let Θi ,v = {j ∈ Θ | jw = iw for w 6= v} for i ∈ Θ and v ∈ V .

Assumption: the quantity

hij =
πj∑

k∈Θi,v
πk

, j ∈ Θi ,v ,

is easy to compute.

Markov chain: choose v ∈ V randomly, and choose j ∈ Θi ,v randomly
according to {hij}. Then move from i to j .

.

Example (cont.)

.

.

.

. ..

.

.

For the Ising model, S = {−1, 1}, V = {1, . . . , n}2, πi ∝ eβ
P

(v,w):v∼w iv iw ,
and

hij =
eβ

P

w∼v jv iw

eβ
P

w∼v iw + e−β
P

w∼v iw
, j ∈ Θi ,v .
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Validity of the Gibbs sampler

.

Lemma

.

.

.

. ..

.

.

The Markov chain constructed above is reversible.

Proof: The transition probability is

pij =
1

|V |
∑
v∈V

1{j∈Θi,v}hij

=
1

|V |
∑
v∈V

1{j∈Θi,v}
πj∑

k∈Θi,v
πk

Then

πipij =
1

|V |
∑
v∈V

1{j∈Θi,v}
πiπj∑

k∈Θi,v
πk

.

This is symmetric because j ∈ Θi ,v ⇔ i ∈ Θj ,v .
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Exercise

.

Exercise

.

.

.

. ..

.

.

Let Θ = {1, 2}2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and

πi =
1

(i1 + i2)Z
, i ∈ Θ,

where Z =
∑

i∈Θ
1

i1+i2
.

.

.

.

1 Write down the transition matrix of the Gibbs sampler.

.

.

.

2 Confirm that the obtained chain is reversible.
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A drawback

In general, the Gibbs sampler is quite powerful.
However, if the “correlation” of the target distribution is high, the
convergence to the stationary distribution may be slow.

.

Example

.

.

.

. ..

.

.

Let Θ = {1, . . . , 100}2 and πi ∝ exp(−|i1 − i2|2/2) (← much correlated).
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Metropolis-Hastings algorithm

Given Xn = i , generate Xn+1 as follows.

Pick Y ∈ Θ according to

P(Y = j | Xn = i) = hij ,

where H = (hij) is an irreducible transition matrix called the proposal.

Given that Y = j , set

Xn+1 =

{
j with probability aij ,
Xn with probability 1− aij ,

where the acceptance probability aij ∈ [0, 1] is determined to satisfy
the detailed balance equation

πihijaij = πjhjiaji .

For example,

aij = min

(
1,

πjhji

πihij

)
, aij =

πjhji

πihij + πjhji
etc.
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.

Example (cont.)

.

.

.

. ..

.

.

Let Θ = {1, . . . , 100}2 and πi ∝ exp(−|i1 − i2|2/2). For example,
determine a proposal matrix as follows:

hij =
1

100

(
1

2
· 1{j1=j2} +

1

198
· 1{j1 6=j2}

)
, i , j ∈ Θ.

Note that hij does not depend on i . We use aij = min(1, πjhji/(πihij)).
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Application: random sampling of mazes

Maze Rooted tree
(The root is indicated by ©)
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Application: random sampling of mazes

Proposal: Select a neighbour point of the root with probability 1/4.
Then modify the tree.
For example,

t=0 (initial) t=1

t=2 t=3

This chain is not reversible, but has the uniform stationary
distribution.
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Application: Bayesian inference

θ is a parameter (unobservable)

x is a data (observable)

π(θ): prior

f (x |θ): likelihood

After the data x is observed, the posterior is given by

π(θ|x) =
f (x |θ)π(θ)∑
θ f (x |θ)π(θ)

.
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Image restoration

original image perturbed image

restored image
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Recommended problems

Recommended problems:

§6.5, Problem 1, 8*, 9.

§6.14, Problem 1.

§6.15, Problem 2,

The asterisk (*) shows difficulty.
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