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Handouts & Announcements

Handouts
@ Slides (this one)
@ A copy of Sections 6.8 and 6.9 of PRP.

About the midterm exam (important!)
@ The midterm exam is on May 25 (Thu) in class.

@ The exam is open-book and open-note: You can bring any book,
note, printed copy and so on. Computers are not allowed.

@ It will consist of 4 or 5 questions and will cover material up to today.



Schedule

We change the schedule.
Apr 6 Overview
Apr 13 Simple random walk
Apr 20 Generating functions
Apr 27 Markov chain
May 11 Continuous-time Markov chain
May 18 Markev-—chain-Mente—Carle — Review
May 25 (midterm exam)
June 8 Stationary—proecesses — Markov chain Monte Carlo

June 15 Renewal-proeesses — Stationary processes
June 22 Martingales

June 29 Queues
July 6 Diffusion processes
July 13 Review
July 207 (Final exam)
The schedule might be further changed...



Outline of today’s lecture

© Review of last week’'s material
@ Irreducibility and aperiodicity
@ Stationary distributions and the limit theorem

© Continuous-time Markov chains
@ The Poisson process
o Continuous-time Markov chains
o Generator

© Recommended problems



Notation (reminder)

e We consider a Markov chain with the transition matrix P = (pj),
where pj = P(Xy =j | Xo = i) fori,j € S.
@ The n-step transition probability is

pin) = PO =] 1 X =1) = D" b+ Pt oy
k1 kn—1
@ A stationary distribution of P is a probability mass function 7 = (7;)
such that wP = 7 in matrix notation.
@ A Markov chain is said to be irreducible if, for any states / and j,
there exists n > 1 such that p;;(n) > 0.



About aperiodicity

We redefine the aperiodicity as follows. (This is the definition in PRP)

Definition

The period of a state i is defined by d(i) = ged{n > 1| p;i(n) > 0}. A
state / is said to be aperiodic if d(i) = 1; periodic otherwise.

Last week’s definition is equivalent:

Proposition (characterization; Problem 6.15.4)

A state i is aperiodic if and only if there exists ng such that p;;(n) > 0 for
any n > ngp.




Example

= d(i)=1
pii(4) >0, pii(5) >0 {:> é&)>0hm”n212
4a+5b|a=0 1 2 3 4 5
b =0 12 16 20
1 13 17 21 25
2 14 18 22 26 30
3] 15 19 23 27 31 35

The Frobenius problem in number theory

https://en.wikipedia.org/wiki/Coin_problem
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You may skip.

Proof.
Let H={n > 1| pi(n) > 0}. Then H is a semigroup, that is,

n,m€eH = n+nméeH.

Suppose d(i) = 1. Then there exist i, ..., n, € H such that ged(ny,...,nm) = 1. By
the Euclidean algorithm, there exist (possibly negative) integers ci, ..., cm such that
>cn=1 Let N=3 n;, C=max;|g|N, and no = NC. For any n > no, we have
n = gN + r with some g > C and 0 < r < N. Since

n=qN+r=73 (q+rg)n

Jj

and g + r¢; > C — N|¢j| > 0, we deduce that n € H.

Conversely, suppose that there exists ng such that n € H for any n > no. In particular,
m € H and ng+ 1 € H. Then we have d(i) = 1 since ged(no, no + 1) = 1. O

v




Remark

Theorem 6.3.2 (a)

If the chain is irreducible, then all the states have the same period.

Example

G=0O=0=Q@ Bothiand; are aperiodic.

Proof.
We only prove the aperiodic case. Let i,j € S and assume d(i) = 1.

| A

o By irreducibility, there exist ny, no such that p;j(n1) > 0, pji(n2) > 0.
@ By aperiodicity, there exists ng such that p;i(n) > 0 for all n > no.
Then
pii(n) = pji(n2)pii(n — n1 — n2)pj(nm) >0
for all n > ng + ny + np. Therefore d(j) = 1. O




Persistence (= recurrence)

o Let T; =inf{n>1] X, =i}. Note that T; may be cc.

@ A state / is called persistent if P(T; < oo | Xop = i) = 1; transient
otherwise.

@ The mean recurrence time of a state i is defined as
wi = E[T; | Xo =1i].

@ A persistent state i/ is called non-null if u; < oco; null otherwise.

v

Exercise

Let P = (OiS 0(')5>. Show that p3 = 3/2 and p = 3.
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The answer to the following problem will be given next week.

Show that the symmetric simple random walk is null persistent.

SO05050505 -

(p=q=1/2)

Hint: Fix any i € Z. Let fi(n) = P(Ti = n| Xo = i). Define
Fs) =3 fi(n)s”, P(s) =S pi(n)s".
n=0 n=0
Note that

F(1)=P(Ti<oco|Xo=1i) and F'(1)=p.
Use the relation P(s) =1+ F(s)P(s) to show that F(1) =1 and F'(1) = co.

11/32



Stationary distributions

An important theorem

Theorem 6.4.3

An irreducible Markov chain has a stationary distribution 7 if and only if
all the states are non-null persistent; in this case, m; = 1/u;.

This is reasonable: since the chain returns the state / once in each period
; on average, the probability that the chain stays at 7 will be 1/ ;.

For proof, refer to Section 6.4.
12 /32



Example

Let P = <0i5 0(')5>. Then 7 = (2/3,1/3), which implies pu = (3/2, 3).

| \

Example

For a simple random walk, the equation = = &P is written as
Tj = pTi—1 + qmit+1. The general solution is m; = a+ bi if p =g, and
mi =a+ b(p/q)" if p# q. But there is no solution satisfying > . m; = 1.

Example
Let S={1,2,---} and

| \

1/2 12 0 0
1/2 0 1/2 0
P=112 o o0 1,2

Then 7j =2~ and Wi = 20




Limiting behavior

Let us see what happens when n — oo.

Example (cont.)

1/2 1/2 0
1/2 0 1/2
P=112 o o

One may find by induction

27 if1<j<n,
pij(n)=4q 27" ifj=n+1,
0 ifj>n+2.

Therefore p;(n) — 7 =27/ as n — oo.




A limit theorem

Theorem 6.4.17
For an irreducible aperiodic non-null persistent Markov chain, we have that

1
pij(n) — — as n—oo, foralliandj.
Hj

The proof is based on a coupling argument.

60

g 2- We cannot distinguish two chains
after they collide. Let one of them
< have the stationary initial distribution.
o See Section 6.4 for details.
T T T T T T T T
0 200 400 600 800 1200

time
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Ergodic theorem

We might use the following theorem in the future.

Ergodic theorem (Problem 7.11.32)

Let X be an irreducible non-null persistent Markov chain. Let f be any
bounded function on S. Then

n—1
ISR = S )i asn— oo,
r=1

ieS

with probability one.

Note that aperiodicity is not necessary here. The theorem plays a
fundamental role in the Markov chain Monte Carlo method.
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Finite state space

If S is finite, the things are quite simple.

Lemma 6.4.5

Let S be finite. If a Markov chain is irreducible, then it is non-null
persistent. In other words, wP = 7v has a unique solution.

This is a corollary of the Perron-Frobenius theorem (Theorem 6.6.1), a
proof of which is found in
@ J. Liesen and V. Mehrmann (2015). Linear Algebra, Springer
(available online).

17 /32



The following problems will be solved next week.

Exercise

0 2/3 1/3
LetP=1] 1 0 0
4/5 1/5 0
© Find the stationary distribution 7.
@ Obtain the mean recurrence time u; = 1/7;.

© Calculate p; by the definition.

Exercise

| A\

1/2 1/2 0 0
1/3 1/3 1/3 0
Let S={1,2,---}andP=11/4 1/4 1/4 1/4

Find the stationary distribution 7r if it exists.

.
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Keep in mind the following questions about Markov chains.
@ Is it irreducible? If no, study each irreducible component.
o Is it aperiodic? If no, you may give up the limit theorem.

@ Does it have the stationary distribution?

e If yes, it is non-null persistent.
e If no, it is null persistent or transient.
o Null persistence may be checked by generating functions.

Refer to Section 6.1 to 6.4 for further information.

Reversibility and MCMC — After the midterm exam.
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Outline today

© Continuous-time Markov chains
@ The Poisson process
o Continuous-time Markov chains
o Generator
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Counting processes

Now let us consider counting processes.

Geiger counter

Arrival of customers

E-mails

Goals in a soccer game

NI

2 o ©
0 R ™A >
evehts y -
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The Poisson process

A Poisson process with intensity A is a process {N(t)}:>0 taking values in
5=1{0,1,---} such that

e N(0) =0.
o (non-decreasing) If s < t, then N(s) < N(t).

o (rare events) As h — 0,

Ah 4+ o(h) ifm=1,
P(N(t+h)=n+m| N(t)=n)= ¢ o(h) if m>1,
1—Xh+o(h) if m=0.

o (independent increments) If s < t, then N(t) — N(s) is independent
of the history {N(u)}u<s.

22 /32



The name "Poisson process” comes from the following fact.

N(t) has the Poisson distribution with the parameter At, that is,

P(N(E) = m) = LD e

m
PEERS
2t o H
OL/_\"\’/I_/t

A sketch of proof: Partition the interval [0, t] into M subintervals. Then

o= = (5) () (-3 - e

23 /32



Interarrival times

The following theorem is more useful for computer simulation.

For the Poisson process with intensity A, the interarrival times X1, Xo, - - -
are independent, each having the exponential distribution with the
parameter \.

— =
0

X X

P(Xl S [X1,X1 + Xm]) = P(N(Xl) = 0) P(N(X1 + Xm) =1 ‘ N(Xl) = 0)
e M1 Adxq

= )\E_Axl Xm.

24 /32



Continuous-time Markov chains

Next consider a continuous-time stochastic process {X(t)}+>0 taking
values in a countable set S.
o It is called a (continuous-time) Markov chain if “the future is
independent of the past given the present.”
@ We only consider homogeneous Markov chains.

Definition
The transition probability of a Markov chain is defined by

pij(t) = P(X(t) = j | X(0) = i).

| A\

Example
The Poisson process is a Markov chain with
Aty .
pij(t) = Ej_)]i)!e At >

25/32



Generator

It is natural to assume that there exists gjj € R such that

pii(h) = 6; + gijh + o(h)

as h — 0, where (5,-J- is Kronecker's delta.

Definition
The matrix G = (gj;) is called the generator of the chain.

The generator of the Poisson process is

A if j=i+1,
gij = -\ ifj=1,
0 otherwise.

In general, gj >0 (j # i), g&i <0, and }_; g;; = 0.

26 /32



Holding time

The following proposition will be useful for computer simulation.

Claim 6.9.13 & 6.9.14

Let X(0) = i. The holding time U = inf{t > 0| X(t) # i} is
exponentially distributed with parameter —g;j;. The probability that the
chain jumps to j is gjj/(—gii)-

Example

Let

= ~15 05 05 05

1 -1 0 0
= 1 0 -1 0
03 02 02 -05

f
®

—
V4

fal
{
B

See the next slide for a result.
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Simulation

o o
o 24 :wmv[cca > oD
2 4 g - otnbam | ||| cmpe
g § |”MH H'
g T = T
@ ]
o e o e Coai
) ) ’V‘Wl
o | S ¢ O i o >
- - T T T T T T
0 50 100 150 200 250 300
time time
(up to t = 30) (up to t = 300)

# In R language
G = matrix(c(-1.5,.5,.5,.5, 1,-1,0,0, 1,0,-1,0, .3,.1,.1,-.5), 4,4, byrow=TRUE)
tmax = 30; i = 1; t = 0; is = c(i); ts = c(t)
while(t < tmax){

U = rexp(1, -G[i,i])

i = sample((1:4)[-il, 1, prob=G[i,-i] / (-G[i,i]))

t =t + U; is = c(is, i); ts = c(ts, t)
}
plot(ts, is, type="s", col="red", xlab="time", ylab="state"); points(ts, is)
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Forward equation

If a generator G is given, then the transition probability is obtained by the
forward equation. It is also called the master equation in application.

Claim 6.9.9 & 6.9.12

Let P: = (pjj(t))ijes. Then we have the forward equation

The solution is

P;: = exp(tG) Z G"

If X(0) has a distribution p£(0), then the distribution p(t) of X(t) satisfies

A distribution 7 is stationary if and only if #G = 0.

29 /32



Examples

Birth-death process

m_)m_}f_\«ﬂ“‘
O=0=0=
—Xo Ao 0 0
pr —(A+ ) A1 0
G= 0

153 —(A2+p2) A2

Is there a stationary distribution? — will be answered next week
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Do you remember the death process introduced in the first lecture?
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Recommended problems

Recommended problems:
@ §6.8, Problem 1, 2, 4%,
@ §6.9, Problem 1, 2.
The asterisk (*) shows difficulty.
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