Theory of Stochastic Processes
3. Generating functions and their applications

Tomonari Sei
sei@mist.i.u-tokyo.ac.jp

Department of Mathematical Informatics, University of Tokyo

April 20, 2017

http://www.stat.t.u-tokyo.ac.jp/~sei/lec.html
There are 3 handouts today.

- Slides (this one)
- A copy of Sections 5.3 to 5.5 of PRP.
- A copy of end-of-chapter problems in Chapters 4 to 6. Make sure to bring it next time.
Outline today

1. Review of last week’s material (slides)

2. Generating functions and their applications
 - Example: recurrence of random walk
 - Fundamental properties (slides)
 - Branching processes

3. Recommended problems
A simple random walk is

\[S_n = S_0 + X_1 + \cdots + X_n, \]

where \(X_i \) are independent, \(P(X_i = 1) = p \) and \(P(X_i = -1) = q = 1 - p \).

A student gave a following-type question in the lecture.

Two statements are mentioned:

- \(S_{n+m} \) is independent of \(S_0, \ldots, S_{n-1} \), conditional on \(S_n \).
- The future is independent of the past, conditional on the present.

Where are \(S_{n+1}, \ldots, S_{n+m-1} \)?

Good question!
Before giving an answer to the question, recall the notion of conditional independence.

- In the following, we only consider discrete random variables, and
- $P(Y \mid X)$ means “$P(Y = y \mid X = x)$ for any x, y”.

Definition

We say that two variables X and Y are independent conditional on Z if

$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z) \quad \text{whenever} \quad P(Z) > 0.$$

Denote this relation by $X \perp\!
\perp Y \mid Z$. (Dawid’s notation)
Lemma

\(X \perp Y \mid Z \) is equivalent to \(P(X \mid Y, Z) = P(X \mid Z) \).

Proof.

Use the identity \(P(X \mid Y, Z) = \frac{P(X, Y \mid Z)}{P(Y \mid Z)} \).

Remark: One may ask what happens if \(P(Z) > 0 \) and \(P(Y, Z) = 0 \). For such cases, you have to redefine the conditional independence and study it carefully. We do not discuss this point anymore. If you get worried, refer to

Here is an answer.

Theorem

For a process \(\{S_n\} \), the following statements are equivalent to each other.

1. \(S_{n+m} \perp S_0, \ldots, S_{n-1} \mid S_n \) for any \(n, m \). (def. of Markov property)
2. \(S_{n+1}, \ldots, S_{n+m} \perp S_0, \ldots, S_{n-1} \mid S_n \) for any \(n, m \).
3. The joint mass function of \(S_0, \ldots, S_n \) for any \(n \) is written as

\[
P(S_0, \ldots, S_n) = P(S_0) \prod_{t=1}^{n} P(S_t \mid S_{t-1}).
\]
Proof

You can skip.

Proof.

(2) \rightarrow (1) is easily proved by marginalization. Proofs of (1) \rightarrow (3) and (3) \rightarrow (2) are given below.

Proof of (1) \rightarrow (3).

The statement (1) means

$$P(S_{n+1} \mid S_0, \ldots, S_n) = P(S_{n+1} \mid S_n).$$

By multiplying this equation over n’s, we obtain

$$P(S_0) \prod_{i=1}^{n} P(S_i \mid S_0, \ldots, S_{i-1}) = P(S_0) \prod_{i=1}^{n} P(S_i \mid S_{i-1}).$$

The left hand side is equal to $P(S_0, S_1, \ldots, S_n)$.

You can skip.

Proof of (3)\rightarrow(2).

The statement (3) implies

\[
P(S_0, \ldots, S_{n+m}) = P(S_0, \ldots, S_n) \prod_{t=n+1}^{n+m} P(S_t \mid S_{t-1}).
\]

By summing up both sides with respect to \(S_0, \ldots, S_{n-1}\), we have

\[
P(S_n, \ldots, S_{n+m}) = P(S_n) \prod_{t=n+1}^{n+m} P(S_t \mid S_{t-1}).
\]

From the above two equations, we obtain the relation

\[
P(S_{n+1}, \ldots, S_{n+m} \mid S_0, \ldots, S_n) = \prod_{t=n+1}^{n+m} P(S_t \mid S_{t-1})
\]

\[
= P(S_{n+1}, \ldots, S_{n+m} \mid S_n).
\]
Remark: Graphical model

The Markov property is visualized as follows.

But this picture is rarely used in the class since it might be confused with the transition diagram of Markov chains introduced next week.

More generally, the following theorem is known.

Hammersley-Clifford theorem (e.g. Theorem 3.9 of Lauritzen (1996))

Let $X = (X_v)_{v \in V}$ be a random vector indexed by V, and G be an undirected graph with vertices V. Suppose that the mass function $f(x)$ is positive everywhere. Then all the conditional independence relations implied by G hold if and only if

$$f(x) = \prod_{C:\text{clique}} \psi_C(x_C)$$

for some ψ_C's.
Outline of today’s lecture

1. Review of last week’s material (slides)

2. Generating functions and their applications
 - Example: recurrence of random walk
 - Fundamental properties (slides)
 - Branching processes

3. Recommended problems
Let S_n be a simple random walk with $S_0 = 0$.

Find the probability of

$$\{\exists n \geq 1, \ S_n = 0\}.$$
Generating functions are sometimes useful for thinking of “recurrence”.

Definition

For any sequence \(a = \{a_n\}_{n=0}^\infty \) of numbers, the (ordinal) generating function is defined by

\[
G_a(s) = \sum_{n=0}^{\infty} a_n s^n.
\]
Example

Consider a recurrence formula (= difference equation)

\[a_k = \frac{1}{k!} + \frac{1}{2}a_{k-1} \quad (k \geq 1), \quad a_0 = 1. \]

By multiplying \(s^k \) on both sides and summing over \(k \geq 1 \), we obtain

\[G_a(s) - 1 = e^s - 1 + \frac{1}{2}sG_a(s). \]

\[\Rightarrow \quad G_a(s) = \frac{e^s}{1 - s/2} \]

\[= \left(\sum_m \frac{s^m}{m!} \right) \left(\sum_n \frac{s^n}{2^n} \right). \]

You may expand the right hand side to obtain each term \(a_k \).
Properties (taken from p.150 of PRP)

Convolution
If \(c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0 \), then \(G_c(s) = G_a(s)G_b(s) \).

Convergence
There exists a **radius of convergence** \(R (\geq 0) \) such that the sum converges absolutely if \(|s| < R \) and diverges if \(|s| > R \).

Differentiation
\(G_a(s) \) may be differentiated or integrated term by term any number of times at points \(s \) satisfying \(|s| < R \). For example, \(G'_a(s) = \sum_{n \geq 1} na_n s^{n-1} \).

Uniqueness
If \(R > 0 \), the sequence \(\{a_n\} \) is uniquely determined by \(G_a(s) \). Explicitly,

\[
a_n = \frac{1}{n!} G_a^{(n)}(0) \quad \text{(note: this calculation is often unnecessary)}.
\]
Abel’s theorem

If $a_n \geq 0$ for all n and $G_a(s) < \infty$ for $|s| < 1$, then

$$\lim_{s \uparrow 1} G_a(s) = \sum_{n=0}^{\infty} a_n,$$

where the sum is finite or $+\infty$.

For students who know measure theory: Abel’s theorem is a particular case of Lebesgue’s monotone convergence theorem.
Proof of Abel’s theorem.

Suppose first that $\sum_{n=0}^{\infty} a_n = +\infty$. Fix any large number $M > 0$. Then there is an integer N such that $\sum_{n=0}^{N} a_n > M$. Then

$$G_a(s) = \sum_{n=0}^{\infty} a_n s^n \geq \sum_{n=0}^{N} a_n s^n \rightarrow \sum_{n=0}^{N} a_n \quad \text{as} \quad s \uparrow 1.$$

Thus $\lim_{s \uparrow 1} G_a(s) \geq M$. Since M is arbitrary, $\lim_{s \uparrow 1} G_a(s) = \infty$.

Next suppose that $A = G_a(1) = \sum_{n=0}^{\infty} a_n$ is finite. Fix any small number $\varepsilon > 0$. Then there is an integer N such that $\sum_{n=N+1}^{\infty} a_n < \varepsilon$. Then

$$|G_a(s) - A| \leq \sum_{n=0}^{\infty} a_n |s^n - 1| \leq \sum_{n=0}^{N} a_n |s^n - 1| + \varepsilon \rightarrow \varepsilon \quad \text{as} \quad s \uparrow 1.$$

Thus $\lim_{s \uparrow 1} |G_a(s) - A| \leq \varepsilon$. Since ε is arbitrary, $\lim_{s \uparrow 1} |G_a(s) - A| = 0$.

\[\square\]
The (probability) generating function $G_X(s)$ of a random variable X taking values in non-negative integers is defined by

$$G_X(s) = E[s^X] = \sum_{k=0}^{\infty} s^k f(k),$$

where $f(k) = P(X = k)$ is the mass function of X.

It is obvious that $G_X(1) = 1$.

Examples

- If $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$, then $G_X(s) = (1 - p + ps)^n$.
- If $f(k) = p^k (1-p)$, then $G_X(s) = (1 - p)/(1 - ps)$.

Properties

We have the following properties as before.

Convolution
If X and Y are independent, then $G_{X+Y}(s) = G_X(s)G_Y(s)$.

Convergence
$G_X(s)$ absolutely converges if $|s| \leq 1$.

Differentiation
$G'_X(1) = E[X]$ and $G''_X(1) = E[X(X - 1)]$.

Uniqueness
$f(n)$ is uniquely determined by $G_X(s)$. Explicitly, $f(n) = \frac{G^{(n)}(0)}{n!}$.
The following is relevant. **But we do not use them today.**

- **Moment generating function** \(M_X(t) = E[e^{tX}], \ t \in \mathbb{R}. \)
- **Fact:** If \(M_X(t) < \infty \) over an open interval containing 0, then \(M_X \) is analytic over the interval and \(M_X^{(n)}(0) = E[X^n]. \)
- **Characteristic function** \(\phi_X(t) = E[e^{itX}], \ i = \sqrt{-1}, \ t \in \mathbb{R}. \)
- **Fact:** The characteristic function is well defined for any random variable \(X. \) The distribution of \(X \) is uniquely determined by \(\phi_X(t). \)

Correspondence:
- probabilistic generating function = Z-transform
- moment generating function = Laplace transform
- characteristic function = Fourier transform
Now let us find out the recurrence probability of the random walk using generating functions.

There are other approaches (exercise)

- Using absorbing probability
- Using the reflection principle
Suppose that a population evolves in generations.

Let Z_n be the number of members of the nth generation.

Each member of the nth generation gives birth to a family of members of the $(n + 1)$th generation.

Assumptions:

(a) $Z_0 = 1$.

(b) $Z_n = X_1^{(n)} + \cdots + X_{Z_{n-1}}^{(n)}$.

(c) $X_i^{(j)}$ are independent and have the same probability mass function f and the generating function G.

Z_n is called a branching process (or Galton-Watson process).

How to obtain the generating function $G_n(s)$ of Z_n using G?
Recommended problems:

- §5.3, Problem 1, 3*.
- §5.4, Problem 4.
- §5.12, Problem 5, 6*, 10*, 11, 17.

The asterisk (*) shows difficulty.