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There are 3 handouts today.
@ Slides (this one)
@ A copy of Sections 5.3 to 5.5 of PRP.

@ A copy of end-of-chapter problems in Chapters 4 to 6. Make sure to
bring it next time.



Outline today

@ Review of last week's material (slides)

© Generating functions and their applications
@ Example: recurrence of random walk
@ Fundamental properties (slides)
@ Branching processes

© Recommended problems



Review of last week's material

Simple random walk

A simple random walk is
Sp=S0+ X1+ -+ X,

where X; are independent, P(X; =1) =pand P(X;=-1)=qg=1—p.

A student gave a following-type question in the lecture.

Question on Markov property

Two statements are mentioned:

@ S,im is independent of Sy, ...,S,_1, conditional on S,,.

@ The future is independent of the past, conditional on the present.
Where are Spi1,.. ., Snim-17

Good question!



Conditional independence

Before giving an answer to the question, recall the notion of conditional
independence.

@ In the following, we only consider discrete random variables, and
e P(Y | X) means “"P(Y =y | X = x) for any x,y".

Definition

We say that two variables X and Y are independent conditional on Z if
P(X,Y | Z)=P(X|Z2)P(Y|Z) whenever P(Z)>0.

Denote this relation by X 1L Y | Z. (Dawid’s notation)




Conditional independence

X 1LY | Z is equivalent to P(X | Y,Z) = P(X | Z).

P(X, Y | Z)
PV 2) -

Use the identity P(X | Y, Z) =

Remark: One may ask what happens if P(Z) > 0 and P(Y,Z) =0. For
such cases, you have to redefine the conditional independence and study it
carefully. We do not discuss this point anymore. If you get worried, refer
to
e M. Studeny (2005). Probabilistic Conditional Independence
Structure, Springer.



On the Markov property

Here is an answer.

Theorem
For a process {S,}, the following statements are equivalent to each other.
Q Spim L So,...,Sp—1|Sn for any n,m. (def. of Markov property)
Q@ Sot1,---,Sntm L So, ..., Sp—1 | Sy for any n, m.
© The joint mass function of Sp,...,S, for any n is written as

P(So, -, Sn) = P(So) [] P(St | Se-1).

t=1




You can skip.

(2)—(1) is easily proved by marginalization. Proofs of (1)—(3) and
(3)—(2) are given below. O

v

Proof of (1)—(3).

The statement (1) means

P(Sns1| S0, Sn) = P(Sns1 | Sn)-

By multiplying this equation over n's, we obtain

n

P(So) [T P(Si | So,-- -, Si1) = P(So) [ P(Si | Si-1).

i=1 i=1

The left hand side is equal to P(So, S1, ..., Sn)- O




You can skip.
Proof of (3)—(2).
The statement (3) implies

n+m

P(So,- > Snim) = P(So,-..,Sn) [ P(Se| St-1).
t=n+1

By summing up both sides with respect to Sg,...,S,_1, we have

n+m

P(Sny- - Snrm) = P(Sa) [ P(Se| Se-1).
t=n+1

From the above two equations, we obtain the relation

n+m

P(Sns1,-- > Snsm | S0, -, Sa) =[] P(St | Se-1)
t=n+1

= P(Sn-i-la 50 .,Sn-‘,-m ’ Sn)




Remark: Graphical model

The Markov property is visualized as follows.

@ <, @ . _@
A C B
[oofo—otobelo

AlLBlIC
@ But this picture is rarely used in the class since it might be confused

with the transition diagram of Markov chains introduced next week.
@ More generally, the following theorem is known.

Hammersley-Clifford theorem (e.g. Theorem 3.9 of Lauritzen (1996))

Let X = (X,)vev be a random vector indexed by V, and G be an undirected graph with
vertices V. Suppose that the mass function f(x) is positive everywhere. Then all the
conditional independence relations implied by G hold if and only if

£(x) = Il c.cigue c(xc) for some ¥c's.




Outline of today’s lecture

© Generating functions and their applications
@ Example: recurrence of random walk
@ Fundamental properties (slides)
@ Branching processes
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Recurrence of random walk

Blackboard

@ Let S, be a simple random walk with Sg = 0.
@ Find the probability of

{3n>1, S, =0}.
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Generating function

Generating functions are sometimes useful for thinking of “recurrence”.

Definition

For any sequence a = {a,}, of numbers, the (ordinal) generating
function is defined by
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Consider a recurrence formula (= difference equation)

1 1
+=-axq (k>1), a=1.

k=T

By multiplying s* on both sides and summing over k > 1, we obtain

Gi(s)—1=e"—-1+ %sGa(s).

= Ga(s)

T 1-s/2

-(£5) (55)

You may expand the right hand side to obtain each term ay.
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Properties (taken from p.150 of PRP)

If ¢, = agbn + a1bp—1 + -+ + anbo, then G.(s) = Ga(s)Gp(s).

Convergence

There exists a radius of convergence R (> 0) such that the sum converges
absolutely if |s| < R and diverges if |s| > R.

Differentiation

| \

G,(s) may be differentiated or integrated term by term any number of
times at points s satisfying |s| < R. For example, G.(s) = >_,~; na,s" L.

Uniqueness

| A\

If R > 0, the sequence {a,} is uniquely determined by G,(s). Explicitly,

1 . .
Sy = HG"SH)(O) (note: this calculation is often unnecessary).




Abel’s theorem

Abel’s theorem

If a, > 0 for all n and G,(s) < oo for |s| < 1, then

IlmG (s) = Zan,

where the sum is finite or +o00.

@ For students who know measure theory: Abel's theorem is a particular
case of Lebesgue’'s monotone convergence theorem.
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You can skip.

Proof of Abel’s theorem.

Suppose first that 7 a, = 4+o00. Fix any large number M > 0. Then
there is an integer N such that ¥ a, > M. Then

0o N N
Gy(s) = Zans” > Zans” — Za,, ass 1.
n=0 n=0 n=0

Thus lim gy Ga(s) > M. Since M is arbitrary, limg1 Ga(s) = oo.

Next suppose that A = G,(1) = Y77 an is finite. Fix any small number
e > 0. Then there is an integer N such that 3%\, a, <e. Then

(%) N
|Ga(s) — Al < Zan]s”— 1 < Zan]s”—H +e—e assl.
n=0 n=0

Thus limsy1 |Ga(s) — A| < e. Since € is arbitrary, lims1 |G,(s) — Al = 0.
[]

v
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Probability generating function

Definition

The (probability) generating function Gx(s) of a random variable X taking
values in non-negative integers is defined by

Gx(s) = E[s*] = iskf(k),
k=0

where f(k) = P(X = k) is the mass function of X.

It is obvious that Gx(1) = 1.

o If f(k) = <Z> p*(1 — p)", then Gx(s) = (1 — p + ps)".

o If f(k) = pX(1 — p), then Gx(s) = (1 — p)/(1 — ps).
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We have the following properties as before.

If X and Y are independent, then Gxy(s) = Gx(s)Gy(s).

Convergence

Gx(s) absolutely converges if |s| < 1.

Differentiation
Gy (1) = E[X] and Gx(1) = E[X(X —1)].

G(”)(O)

f(n) is uniquely determined by Gx(s). Explicitly, f(n) =
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Other transform

The following is relevant. But we do not use them today.

o Moment generating function Mx(t) = E[e?X], t € R.

e Fact: If Mx(t) < oo over an open interval containing 0, then Mx is
analytic over the interval and I\/l)(<")(0) = E[X"].
Characteristic function ¢x(t) = E[e™X], i = v/—1, t € R.

Fact: The characteristic function is well defined for any random
variable X. The distribution of X is uniquely determined by ¢x(t).

Correspondence:

e probabilistic generating function = Z-transform
e moment generating function = Laplace transform
o characteristic function = Fourier transform
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Random walk again

Now let us find out the recurrence probability of the random walk using
generating functions.

Blackboard

There are other approaches (exercise)
@ Using absorbing probability

@ Using the reflection principle
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Branching processes

Blackboard

Suppose that a population evolves in generations.

Let Z, be the number of members of the nth generation.

Each member of the nth generation gives birth to a family of

members of the (n+ 1)th generation.

Assumptions:

(a) Lo =1.

(b) Zn=X{"+--+ X .

(c) X,-U) are independent and have the same probability mass function f
and the generating function G.

Z, is called a branching process (or Galton-Watson process).

How to obtain the generating function G,(s) of Z, using G?
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Recommended problems

Recommended problems:

@ §5.3, Problem 1, 3*.

@ §5.4, Problem 4.

@ §5.12, Problem 5, 6*, 10%, 11, 17.
The asterisk (*) shows difficulty.
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