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Outline of today’s lecture

@ Course plan
© Introduction of stochastic processes

© Review of elementary probability theory



Overview

From syllabus:

Course objective Stochastic processes are useful to model random
phenomena changing in time. This course is aimed at an
introduction to stochastic processes.

Teaching methods lecture, mainly using black board

Method of evaluation midterm exam 40%, final exam 60%.
(No assignment, but some exercises will be provided every
week.)

Notes on taking this course Students are assumed to have basic
knowledge of the elementary probability theory that will be
reviewed in the first lecture (= today).



o G. Grimmett and D. Stirzaker, Probability and Random Processes,
3rd ed., Oxford University Press, 2001.
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The book title will be abbreviated as PRP.

@ Author’s web site:
http://wuw.statslab.cam.ac.uk/"grg/books/prp.html

o Copies of necessary parts will be provided in the class.
@ Will be put in the Library (1st floor) possibly in May.

Thanks to Dr. Alfred Kume for his advice on choosing books.
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Schedule

We will learn about the following topics week by week.
Apr 6 Overview
Apr 13 Simple random walk
Apr 20 Generating functions
Apr 27 Markov chain
May 11 Continuous-time Markov chain
May 18 Markov chain Monte Carlo
May 25 (midterm exam)
June 8 Stationary processes
June 15 Renewal processes
June 22 Martingales
June 29 Queues
July 6 Diffusion processes
July 13 Review
July 207 (Final exam)
Note: the order may be changed.



Office hours

Office hours are offered
@ Every Tuesday 12:00-14:00 without appointments.
@ My office is Room 344 on the 3rd floor of this building.
o Feel free to ask any questions and comments.
@ You can also make an appointment at another time by e-mail
sei@mist.i.u-tokyo.ac.jp

| am happy to go out for coffee :-)

Note: On Apr 18 (Tue), it will be reduced to 13:00-14:00.

Other information will be announced on
http://wuw.stat.t.u-tokyo.ac.jp/ sei/lec-j.html



Outline of today’s lecture

© Introduction of stochastic processes



What is a stochastic process?

There are two equivalent definitions:
@ A set of random variables indexed by time
@ A random function of time
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An outcome of rolling a dice 25 times.



Classification of stochastic processes

discrete time continuous time
T
discrete state o /o/ ! Y .
-] fd |
continuous state | .| /| i/

Today | introduce only a continuous-time discrete-state process.
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An essay written by K. |t

K. Itd, Probability theory and I, p.57. (translated by Sei)

(snip) But reality is always further complicated, and scientists use
mathematics just as an approximate model. Therefore, even if
mathematicians made great efforts to build a rigorous mathematical
theory, it is not much taken into account and is used in a quite rough way.
For example, decay of N radioactive elements is described by

dN(t)
dt

= —aN(t), N(0)=N.

Here N(t) is the number of atoms after time t, and « is the decay rate.
Since N(t) is an integer, this equation is completely not acceptable for

mathematicians, who know “functions that are continuous but nowhere
differentiable.” (snip)

Jan 1980
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(cont.)

In order to satisfy mathematicians, solve this problem as follows. Let p(t)
be the probability that each atom is alive after time t. It satisfies

PO ap(t). p(0)=1.

The solution is
p(t) = e L.
Let us number the given N atoms from 1 to N, and define

X(t) =1 or 0

according to life or death of n-th atom at time t. Then, the total number
N(t) of atoms at time t is a stochastic process

N
N(t) = Xa(t).
n=1
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The death process

@ The above stochastic process N(t) is called the death process.
o A sample path of N(t) is like this:

@ The process can be applied to phenomena of decrease.

The world is surrounded by randomness!
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Simulation

Let's simulate the death process.

A naive method
For each 1 < n < N, let T, be the time when the n-th atom dies. The
distribution of T, is the exponential distribution:

P(T,>t)=e .
Then, define X,(t) by

1 if T,>t,
Xn(t) = { 0 otherwise.

This is called the indicator variable of the event { T, > t}.
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Simulation
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# In R language

N = 100; alpha = 2

Ts = rexp(N, alpha)

Es = c(0, sort(Ts))

plot(Es, N:0, type="s", xlim=c(0, 2), xlab="time", ylab="Number of atoms")
curve(N * exp(-alpha*x), add=TRUE, col="red") 16 /32



Simulation

Another method of simulation
Let Uy,..., Uy be independent random variables with

P(Uk 2 t) _ e—(N-‘rl—k)oct.

Then, Z,’Yzl Xn(t) has the same distribution as

N(t) =N —max{n| ) Uc <t}
k=1

Exercise:  Why does this method work?
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Simulation
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time

Us = rexp(N, (N:1)xalpha)

Es = c(0, cumsum(Us))

plot(Es, N:0, type="s", xlim=c(0, 2), xlab="time", ylab="Number of atoms")
curve(N * exp(-alpha*x), add=TRUE, col="red")
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Convergence: law of large numbers
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We will touch on this kind of limit theorems at a later date.
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Questions on the death process

Remark: There are some probabilistic (or analytic) questions:
@ Is N(t) constructed above right-continuous?

e Furthermore, is it cadlag (continue a droite, limite a gauche = right
continuous with left limit)?

Does N(t) converge to 0 as t — oo with probability 17
Does it hold that
> e> =07

lim P {sup
N—oo t>0

You may not need to take this course if you can answer this question
immediately...

N(t) _ e—at

N

More about the process:
@ What is the time complexity of the simulating methods?

@ How to obtain the likelihood function with respect to the parameter a
if N(t1),...,N(tx) are observed?
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Remark: The Monte Carlo method

@ A concept related to simulation is the Monte Carlo method. This is a
quite powerful tool for evaluation of expectations.

@ For example, an approximate value (with error estimate) of

E( X1+ ———+
X2+X71

I
Xat%e

for independent uniform random variables Xi, ..., X5 on [1,2] will be
easily obtained.

@ For more complicated problems, we may need the Markov Chain
Monte Carlo (MCMC) methods.

@ We will learn about them at a later date.
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Outline of today’s lecture

© Review of elementary probability theory
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Review of elementary probability theory

The first 3 chapters of the book “PRP” are
@ Chapter 1: Events and their probabilities
@ Chapter 2: Random variables and their distributions
@ Chapter 3: Discrete random variables
Recommended problems:
@ §1.8, Problems 20, 22, 28*, 30 and 37.
@ §2.7, Problems 4, 12* and 13*.
@ §3.11, Problems 5, 6, 7, 16, 17, 33* and 34*.
The asterisk (*) shows difficulty.

Work out!
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Review of Chapter 1

Let Q be a set. A collection F of subsets of Q is called a o-field if it
satisfies

Q lerF
Q Ay, Ay ...€ F = UZ A €F,
Q@ Ac F= Ae F.
The set Q is called the sample space. Each A € F is called an event.

| A

Definition
A probability measure P on (Q, F) is a function P : F — [0, 1] such that
°o P(Q) =1,
© Aj,Ax,...€ Fand AiNA; =0 for any i #
= P(U2,A) = 222, P(A).
The triplet (2, F, P) is called a probability space.
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Review of Chapter 1

Definition

Let A and B be events. If P(B) > 0, then the conditional probability that
A occurs given that B occurs is defined to be

P(AN B)

P(AIB) =~ g5

Definition

Events A and B are called independent if
P(AN B) = P(A)P(B).

More generally, events A1, ..., A, are called independent if
P(NiesAi) = [Tie,P(AI)

for any subset J C {1,...,n}. (Note: we interpret C as C.)

25 /32



Review of Chapter 2

Definition

A random variable X on a probability space (22, F, P) is a function

X : Q — R with the property that {X < a} ={w e Q| X(w) < a}isa
member of F for any a € R.

Keep in mind that a random variable is a function!

But, you can sometimes forget about it
when you use the distribution functions:

Definition
The (cumulative) distribution function of a random variable X is defined
by F(x) = Fx(x) = P(X < x).
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Review of Chapter 2

Definition

A random variable X is discrete if it takes values only in some countable
subset of R. For the discrete random variable X, the (probability) mass
function is defined by f(x) = P(X = x).

Remark: P(X € A) =3 ca P(X =x).

Definition
A random variable X is continuous if its distribution function is written as

Flx) = / " F(u)du

—00

for some function f(x) called the (probability) density function.

Remark: P(X € A) = fA
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Review of Chapter 2

Definition

The joint distribution function of a random vector X = (X, ..., X,) on
the probability space (2, F, P) is the function

F(X)ZFX(X):P(Xllew"aXnSXn)-

For n = 2, the joint mass function of a discrete random vector (X, Y) is
flx,y) = P(X=x,Y =vy).

The joint density function f(x, y) of a continuous random vector (X, Y) is

defined by
x oy
F(x,y) = / / f(u, v)dudv.
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Review of Chapter 3

The functions Fx(x) and Fy(y) are called the marginal distribution
functions of Fx y(x,y).

Definition

Random variables X and Y are called independent if

Fx,y(x,y) = Fx(x)Fv(y)

for any x and y in R.

Lemma: If (X, Y) has the joint mass (or density) function fx y(x, y), then
X and Y are independent if and only if fx y(x,y) = fx(x)fy(y).
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Review of Chapter 3

Definition

If a discrete random variable X has a mass function f(x), then the
expectation of X is defined by

E[X] =) xf(x).

Lemma: For g : R — R, the expectation of g(X) is

Elg(X)] =) _g(x)f(x).

Definition
The variance of X is defined by Var[X] = E[(X — E[X])?].
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Review of Chapter 3

Lemma: For h: R? — R, the expectation of h(X,Y) is
E[A(X V)] =D ) h(x ) (x,y).
x y

Definition

The covariance of random variables X and Y is
Cov[X, Y] = E[(X — EIX])(Y — E[Y])].
The correlation (coefficient) of X and Y is

Cov[X, Y]

\/Var[X]Var[Y]

plX, Y] =

Lemma: |p[X, Y]] < 1.

Lemma: If X and Y are independent, then X and Y are uncorrelated,

meaning p[X, Y] = 0. But the converse is not true.
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Review of Chapter 3

The conditional mass function of Y given X = x is
Flylx) = P(Y = y|X = x).

The conditional expectation of Y given X = x is

E[YIX =x] =) yf(y[x).

Let ¥(x) = E[Y|X = x]. Then ¥(X) is denoted by E[Y|X]. In particular,
E[Y|X] is a random variable.

Lemma (tower property): E[E[Y|X]] = E[Y].
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