Theory of Stochastic Processes

Lecture 13: Review (partially solved problems)
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July 13, 2017

Solutions to a part of recommended problems are given.

Lecture 8: Markov chain Monte Carlo

BMProblem 6.5.1 By induction, we obtain

Ao A
T, = 0.
M-
Then ) \
Y '
TiDisig1 = ———— T = Tip1Pi+1,is ©=0,...,b—1.
e

For other pairs (4, j), ¢ # j, mipi; = 0 = 7;pj;. Therefore the chain is reversible.

BProblem 6.5.8 Suppose P is reversible. Let 7t be the stationary distribution and D, be the
diagonal matrix with diagonal entries 7w. Then S = D, P is a symmetric matrix by definition
of reversibility. We obtain P = D_'S.

Conversely, suppose P = DS = (d;S;;). Define m; = (1/d;)/ >, (1/dx). Then m;p;; =
m;d;Sij = Sij/ >, (1/dy) is symmetric. Therefore P is reversible.

Next suppose P = DS. Let T = D~'/2PD'/2. Then T has the same eigenvalues as P.
Since T = D'/28D'/? is symmetric, the eigenvalues are real.

Finally, consider a transition matrix

1 1 1

? gTa g:a 11
P=ls 35 3 | acl33)

3 a0 3+«

3 3 3

111
37373
other hand, P has the real eigenvalues 1, a;, 0.

The stationary distribution is 7 = ( ). The chain is not reversible unless @ = 0. On the
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Lecture 9: Stationary processes

BMProblem 2 The process is represented as

Xn=9(L)Zn, g(z)=0(1—ajz—-—ayz)"".

Since all the roots of 1 — a2z — -+ — 2P = 0 are outside of the unit circle, g(z) has the

convergence radius greater than 1. Then the spectral density is given by

, 1
A) = —[g(e™)]* = .
f(N) 271’9(6 )l 27T|1_21]?:1 €2

by Theorem 2 of the lecture note of Lecture 9.

BProblem 4 (i) Since A and B have the mean zero, the mean of X, is

E[X,] = E[Acos(Qn) + Bsin(Qn)] = 0.

Since E[A?] = E[B?] = 1 and E[AB] = 0, the covariance of X,, and X,,,,, is

E[X, Xp+m] = Elcos(2n) cos((n + m))| + E[sin(Qn) sin(Q(n + m))]
1

= /O7T (cos(wn) cos(w(n +m)) + sin(wn) sin(w(n +m))) dw

L 1 ifm=0
= / cos(wm)dw = { nme=
0

™ 0 otherwise.

Therefore X, is the white noise. In particular, it is stationary.

(ii) We have Xo = A, X; + X_1 = 2Acos(2), and X1 — X_; = 2Bsin(f2). The first two
equations determine A and . If Q #£ 0 and  # m, then the third equation determines B and
therefore all X, are determined. Even if Q@ =0 or Q = 7, X,, = Acos({dn) is determined.

BMProblem 5 For real numbers vq,...,vy,
N N N )
Z voneli — k) = 33 o E[X X = E [(z;v L0, X;) } >0,
=1 k=1 =1 k=1

Hence the matrix C = {c(j — k)} is non-negative definite*!. All the eigenvectors of C are
given by v,, = (N~1/2e2mmn/NYN__ for m =0,..., N — 1. Indeed,

(C’Um — nv—1/2 Z 27szn/N

— N—1/2627'rimk/N Zc(—j)e%imj/N ] = — k‘,
j=1

= Nf(m)(vm)kv

*1 The assumption c(n) = ¢(n — N) is not necessary here.
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The spectral decomposition of C is C

where f(m) = N—! Zf;ol c(n)e=2mimn/N
z,jx;é N f(m)v,v}, and therefore
71 Nil . .
c(f—k) =Y Nf(m)(vm);(vp)e =Y f(m)e>™mU—kKI/N,
m=0

MProblem 6 (i) It is easy to see that E[X] = N~13Y" E[X,] = u. Furthermore,
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n=—(N-1) (j,k):j—k=n

N-1
—NT S (1 nl/N)p(n).
n=—(N-1)
(i)
N ~ N B
E[&z] =N"! ZE[(Xn - X)z] =Nt ZE[((Xn —p) — (X = N))ﬂ

= N7 Y ABI(Xn — 1)) = 2B[(Xo — i) (X = w)] + B[(X - w)*]}

= N""{No®> —2NE[(X — p)*| + NE[(X — p)*]} = 0® — V[X].

(iii) By (i) and Abel’s theorem (or monotone convergence theorem), we have

Jm NVIE]= lm Y (I—[nl/N)em) = Y pln) = 0.
n=—(N-1) n=-—00

In particular, limy_,o, V[X] = 0. By (ii), we also have

lim E[6%] = lim (¢ — V[X]) = ¢%

N—oo N—oo
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Lecture 10: Martingales

BWProblem 12.1.3 E[Z,1p0 " YFu] = ElZps1|Za]p ™ = (uZp)p= "t = Zpp™™.
Enp?»+1|F,] = Eln?»+'|Z,] = G(n)%» = n?", where G is the generating function of Z;

WProblem 12.1.5 E[(Y), — Y;)Y;] = E[E[Y), — Y;|F;]Y;] = E[(Y; — Y;)Y;] = 0.

E[(Yy — Y;2\F] = EV2F] - 2B(ENIF]Y;\F] + EV2IF) = EVRIF] - EIY?IF)
Suppose that E[Y,?] < K for all n. Since E[(Y,, — Y;)?] = E[Y,2] — E[Y,2] for m < n, E[Y?]
is non-decreasing. Therefore there exists lim, .o, E[Y;?] < K. In particular, for any € > 0,

there exists ng such that |E[Y,?] — E[Y,2]| < € for all n,m > ng. Then E[(Y, — Y,;,)?] =

E[Y?] — E[Y,2] < e. Therefore Y,, is a Cauchy sequence and converges in mean square*?.

BProblem 12.1.6 By Jensen’s inequality, we have
Elu(Yyn+1)[Fn] = u(EYn+1|Fn]) = u(Yn).

This means u(Y,,) is a submartingale. The processes |Y,|, Y;2, Y,I are submartingales since

functions u(y) = |y|, ¥%,y" = max(0,y) are convex, respectively.

BProblem 12.2.1 We apply McDiarmid’s inequality. Let f((vi,w1),. .., (vn,wy)) be the max-
imum worth when the volume and worth of the i-th object are v; and w;. If an object (v;, w;)
is replaced with (v}, w}), then f changes at most M. Indeed, after the i-th object is removed if

necessary, the total cost is reduced at most M while the packed objects are feasible. Therefore
F((vr,w1)y ooy (v w;i)y ooy (Vn,wp)) — M < f((v1,w1),. 0, (U5, w05, .oy (U, wy))
and
Fl(vr,wr), .y (v, wh), o (v, wp)) — M < f((v,w1), .o, (i w;)s e ooy (U, wh)).
Now, McDiarmid’s inequality implies that
P(|Z — E[Z]| > nMe) < 2exp(—ne?/2), &> 0.
Let x = nMze to obtain

P(|Z — E[Z]| > ) < 2exp(—2?/(2nM?)), x> 0.

*2 Here we used the completeness property of L2. This was beyond the scope of this lecture..

4
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Lecture 11: Queues

BProblem 8.4.1 (a) Let X1, Xo, X3 be the service time of the two customers and you. Denote
the teller you chose by Z = 1,2. Denote the exponential density function by fy(z) = Ae™*
Then the probability we want is

p= %P(Xl + X3 > XolZ=1)+ P(X1 < Xo+ X3|Z =2)
— ;/MHPM Ia(@) fu(xe) fa(xs)dridaades + 5 /xl<x2+x3 (@) fu(x2) fu(23)day dogdas
- % <(Aiuu)2 - )\iu) +% ((Aiuu)z * Ai,)
A 1
RCETAS

(b) Suppose that A < . Then you always take Z = 2. Hence

A A
A+p)?  Atnp

(c) If X7 < X5, then Z = 1. Otherwise, Z = 2. Therefore

:P(Xl < Xo, X1+X3>X2)+P(X1>X2, X1<X2+X3)

A n A
A+ A p)?

In particular, pay > p) > P(e)-

BMProblem 11.2.3 The waiting time W of a customer arriving at time 0 is the sum of service
time of the Q(0) people. Let X,..., X,, be the service time of the Q(0) = n customers. Since

Q(0) has the stationary distribution, we have
oo
P(W > x) Z )" P(X14+--+ X, >x), x>0.

Since X; has the exponential distribution with parameter y, the distribution of X7 +---+ X,
is the gamma distribution. Therefore
nin—1

“p —put
P(X1+‘-'+Xn>:c):/ ——e Mdt.
. (n—=1)!
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and

We have P(W < z) =1 — pe~#=N?_1In particular, P(W = 0) = P(W <0) =1 — p.
BProblem 11.3.1 The problem is to determine the mean of Q(D). By Theorem 13.3.5 of
PRP, the generating function of Q(D) is given by

G) = (1= p)(s = D2

where Mg(6f) is the moment generating function of a typical service time. In this problem,

the service time is the constant d. Therefore Mg (#) = €4, and

e)\(s—l)d 6p(s—l)
G(s)=(1—p)(s— 1)m =[1-p)(s—1)

s — ep(s—1)’

where p = A\d is used. The mean length of Q(D) is G'(1). By Taylor’s expansion around
s = 1, we obtain
1+ pr+O(r?)
l4+r—1—pr—3p?r2+0(r?)
1+ pr+O(r?)
1—p—3p%r+0(r?)

1 2
:1+<p—|— P >r+0(r2)

21—p
1p(2—p)
2 1-p

Gl+r)=(1-p)r

=10

=1+ p) r+0(r?).

Hence G'(1) = 5p(2 — p)/(1 - p).
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Lecture 12

WProblem 2 Typo: the definition of Z should be Z = >N b, (Wy, — Wy, _,).
Denote Z = Zy and F; = {W;}s<¢. By induction,

ElZN)=E[Zn_1 +bn_1(Wy — Wiy ,)]
= FE[Z, 1]+ EbN1EWiy — Wi | Fin_i ]
= E[Zn—l]
=FE[Zy]=0

Similarly,

VIZN] = E[(Zn-1+bn—1(Wiy — Wiy )]
E[E[(ZN—l + bN—l(WtN - WtN—l))2|ftN71H
BElZ%_1 + b1 (ty — tn-1)]

E[b7 1](t; — ti1)-

I
M=

1

.
Il

BProblem 4 The OU process is represented as

t
X, =e % <X0 + a/ eedes> .
0

0

Thus, given Xy = x, the mean is E[X;] = ¢ %z — 0 as t — oo, and the variance is

VX = Bl(X; — e"2)?]

</Ot eGSdWS>2]

t
202629t/ e*%ds  (Ito isometry)
0

— 0'26_20tE

_ 26t
2021 e
20
2
— (27—9 (t — 00).
Thus N(0,02/(20)) must be the stationary distribution. Indeed, if Xq ~ N(0,02%/(20)),
then X; = e %Xy + o f(f e?*dW,) is the sum of independent random variables having

N(0,e2052/(20)) and N(0,02(1 — e=29%)/(26)). Therefore X; ~ N(0,0%/(260)).

WProblem 5 (a) d(W?) = 3W2dW, + 3W,dt. Thus W = 3 [ W2dW, + 3 [ Wds.
(b) dE(Wy) = fF(We)dW + (1/2) f'(Wy)dt. Thus F(Wy) = [o f(W)dW + (1/2) [y f'(Wy)ds.
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BProblem 7 For any f : R? — R, we have

E[df(X,)] = E | Y (8if)dXi(t) + (1/2) Y (80, £)(dXi(1))(dX;(1))

i ,J

=E |> (0 i+ (1/2)> (0:0;1) D 0ia0ja | dt
| i i, a
By using E|[f = [ f(y)p(t,y)dy and the integral-by-parts formula, we have
/f )Orpdy = /f > () + (1/2) Y 0:0,{> _ 0ia0jap} | dy.
%9 a

Since f is arbitrary, the result follows.

BProblem 9 The drift term is

1 e\ 1 1\ 1 /7 ¢ g 7 g
uw=—|log + —( —= — =5 = -5
2g V9 2y9 \V9g T2 29 49 2gm 29

The diffusion term is o = 1/,/g. Then the right hand side of the forward equation is

( ),+1(2),, 7 g /+1 \"
- —(o"m) = —| — — ==
KI5 29 242) T2 \y

B g7 ’_‘_1 ™ gr\
- \29 2% 2\g ¢

=0.




