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Theory of Stochastic Processes

Lecture 12: Diffusion processes

Tomonari SEI

July 6, 2017

A diffusion process is a Markov process with continuous trajectories, that is constructed by

stochastic integral with respect to a Brownian motion. We briefly study how to manipulate

diffusion processes and apply them to specific problems. Most of the proofs are omitted*1.

1 Brownian motion

Definition 1. A continuous-time process {Wt}t≥0 taking values in R is called a standard

Brownian motion (or standard Wiener process) if

(i) W0 = 0.

(ii) Wt − Ws is independent of the past history {Wr}r≤s for 0 ≤ s < t,

(iii) Wt − Ws has the normal distribution N(0, t − s) for 0 ≤ s < t, and

(iv) the path t 7→ Wt is continuous.

A sample path is shown in Figure 1.
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Figure1 A sample path of the standard Brownian motion.

*1 See e.g. B. Øksendal (2003), Stochastic Differential Equations: An Introduction with Applications, 6th

ed., Springer.



Lecture 12: Diffusion processes

The following theorem is fundamental but the proof is not so obvious (and omitted).

Theorem 1. The Brownian motion exists on a probability space.

We check some properties of the Brownian motion. In general, a stochastic process {Xt}t≥0

is said to be adapted if Xt is a function of the past history Ft = {Ws}s≤t
*2. An adapted

process Xt is called a Markov process if the conditional distribution of Xt given Fs depends

only on Xs for s < t. An adapted process Xt is called a martingale if E[Xt|Fs] = Xs for s < t.

Theorem 2. The Brownian motion itself is a Markov process and a martingale.

Proof. The Markov property follows from the condition (ii). We also have

E[Wt|Fs] = E[Ws|Fs] + E[Wt − Ws|Fs] =
(ii)

Ws + E[Wt − Ws] =
(iii)

Ws.

Hence Wt is a martingale.

By definition, the density function of Wt = y given Ws = x is

p(t, y|s, x) =
1√

2π(t − s)
exp

(
− (y − x)2

2(t − s)

)
. (1)

It is easy to see that the density satisfies the heat equation

∂p

∂t
=

1
2

∂2p

∂y2
. (2)

Therefore the Brownian motion describes a microscopic structure of diffusion phenomena.

Historically, this was the motivation for the study of the Brownian motion. Nowadays the

Brownian motion is applied to various fields of science and technology. We give an example.

Example 1 (Brownian bridge). Let Wt be a standard Brownian motion and define

Bt = Wt − tW1, 0 ≤ t ≤ 1. (3)

This process is called a Brownian bridge. It is easy to see that (Problem 1)

E[BsBt] = s(1 − t) for s ≤ t. (4)

In statistics, for given data X1, . . . , Xn ∈ R, the empirical distribution is defined by

F̂ (t) =
1
N

N∑
i=1

1{Xi≤t}, t ∈ R,

If Xi’s are independent and uniformly distributed on [0, 1], then F̂ (t) has mean t and covariance

E[F̂ (s)F̂ (t)] = s(1 − t)/N for s ≤ t. Furthermore, it is known that
√

N(F̂ (t) − t) converges

to the Brownian bridge as N → ∞. This fact is applied to a goodness-of-fit test such as the

Kolmogorov-Smirnov test*3.

*2 More precisely, Ft is the σ-field generated by {Ws}s≤t and Xt is called adapted if Xt is Ft-measurable.
*3 See Chapter 19 of A. W. van der Vaart (1998), Asymptotic Statistics, Cambridge University Press.
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2 Itô calculus

Let {Wt} be a standard Brownian motion. Suppose that bt is an adapted process and∫ T

0
E[b2

t ]dt < ∞. Then the stochastic integral (or Itô integral) of bt with respect to Wt is

defined by*4 ∫ T

0

btdWt = lim
n→∞

2n∑
i=1

bti−1(Wti − Wti−1), ti =
iT

2n
,

where the limit is interpreted as the mean-square convergence.

Example 2 (continuous-time betting game). Imagine a stock price Wt generated by the stan-

dard Brownian motion. Your initial capital is X0 > 0. If you have bt tickets during the time

[t, t + ∆t], you will get bt(Wt+∆t − Wt) as a profit. Then your capital process Xt will be

described as Xt = X0 +
∫ t

0
bsdWs.

It is shown that (c.f. Problem 2)

E

[∫ T

0

btdWt

]
= 0, E

(∫ T

0

btdWt

)2
 =

∫ T

0

E[b2
t ]dt.

The latter identity is called Itô isometry. The following theorem also holds.

Theorem 3. For any adapted bt, the process
∫ t

0
bsdWs is a martingale.

Example 3. We can show that ∫ t

0

WsdWs =
W 2

t − t

2
.

Indeed, by definition, the left hand side is the limit of

2n∑
i=1

Wti−1(Wti − Wti−1) =
1
2

∑
i

(
W 2

ti
− W 2

ti−1

)
− 1

2

∑
i

(Wti − Wti−1)
2

=
1
2
W 2

t − 1
2

∑
i

(Wti − Wti−1)
2

︸ ︷︷ ︸
Z

,

where ti = it/2n. The result follows from E[Z] = t and V [Z] = (2t2) · 2−n → 0 as n → ∞.

The process W 2
t − t is directly shown to be a martingale (see Problem 3).

A process Xt is called an Itô process if there exist adapted processes µt and σt such that

dXt = µtdt + σtdWt, (5)

*4 The definition is valid only for a reasonable class of bt. In general, we have to use a limiting argument.
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meaning that

Xt − X0 =
∫ t

0

µsds +
∫ t

0

σsdWs.

Theorem 4 (Itô’s formula). Let Xt be an Itô process and f(t, x) be a smooth function. Then

the process Yt = f(t,Xt) is an Itô process with

dYt = (∂tf)dt + (∂xf)dXt +
1
2
(∂2

xf)(dXt)2,

where dXt and (dXt)2 are interpreted as µtdt + σtdWt and σ2
t dt, respectively.

Example 4. The process W 2
t satisfies

d(W 2
t ) = 2WtdWt + dt.

Therefore we have W 2
t = 2

∫ t

0
WsdWs + t. This result is consistent with Example 3.

3 Diffusion processes

A process Xt is called a diffusion process if there exist functions µ(t, x) and σ(t, x) such that

dXt = µ(t,Xt)dt + σ(t,Xt)dWt. (6)

The coefficients µ(t, x) and σ(t, x) are called the drift and diffusion coefficients. The equation

(6) is called a stochastic differential equation (SDE). We do not discuss the existence and

uniqueness of solutions. The following theorem is quite natural.

Theorem 5. A diffusion process defined by (6) is a Markov process.

We give two examples of diffusion processes.

Example 5 (Ornstein-Uhlenbeck process). Let θ > 0 and σ > 0. Define a diffusion process

{Xt}t≥0 by

dXt = −θXtdt + σdWt. (7)

Applying Itô’s formula to f(t,Xt) = eθtXt, we have

d(eθtXt) = eθt(dXt + θXtdt) = σeθtdWt.

By integrating out, we have

Xt = e−θt

(
X0 + σ

∫ t

0

eθsdWs

)
.

The process Xt is called the Ornstein-Uhlenbeck process. Letting σ → 0, we have the deter-

ministic motion Xt = X0e
−θt. The Ornstein-Uhlenbeck process has a stationary distribution

N(0, σ2/(2θ)). See Problem 4.
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Example 6. Define a diffusion process Xt by X0 = 0 and

dXt = − Xt

1 − t
dt + dWt, t ∈ [0, 1).

Applying Itô’s formula to f(t,Xt) = Xt/(1 − t) and integrating out, we have

Xt = (1 − t)
∫ t

0

1
1 − s

dWs. (8)

The process Xt is a mean-zero Gaussian process with the autocovariance function

E[XsXt] = (1 − s)(1 − t)
∫ s

0

1
(1 − u)2

du = (1 − s)(1 − t)
(

1
1 − s

− 1
)

= s(1 − t)

for s < t. Hence Xt has the same distribution as the Brownian bridge Bt defined in (3). Note

that the two processes Bt and Xt are different as a functional of Wt, even though they have

the same distribution. See Figure 2.
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Figure2 Two ways of constructing a Brownian bridge. Refer to Equations (3) and (8).

Let p(t, y|s, x) be the conditional density function of Xt = y given Xs = x for s < t. We

call it the transition density function of the diffusion process.

Theorem 6. The transition density function p(t, y|s, x) of a diffusion process (6) satisfies

∂p

∂t
= − ∂

∂y
{µ(t, y)p} +

1
2

∂2

∂y2
{σ(t, y)2p}. (9)

This is called the forward equation or Fokker-Planck equation.

Proof. Let f(x) be any smooth function. By Itô’s formula, we see that, given Xs = x,

E[f(Xt+dt) − f(Xt)] = E

»

(∂xf)(µtdt + σtdWt) +
1

2
(∂2

xf)σ2
t dt

–

= E

»

(∂xf)µt +
1

2
(∂2

xf)σ2
t

–

dt,
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where µt denotes µ(t, Xt) and so on. Dividing both sides by dt and substituting E[f(Xt)] =
R

f(y)p(t, y|s, x)dy, we obtain

Z

f(y)(∂tp)dy =

Z

{(∂yf(y))µt +
1

2
(∂2

yf(y))σ2
t }pdy

=

Z

f(y){−∂y(µtp) +
1

2
∂2

y(σ2
t p)}dy,

where the integration-by-parts formula is used. Since f is arbitrary, we obtain the result.

4 Application: Langevin Monte Carlo

Suppose that we want to generate samples from a density function π(x) = π∗(x)/Z on R,

where Z =
∫∞
−∞ π∗(x)dx is the normalizing constant. Consider a diffusion process

dXt =
1
2
(log π∗)′(Xt)dt + dWt. (10)

The process has the stationary distribution π(x). Indeed, the forward equation (9) is satisfied

by p(t, y|s, x) = π(y) (Problem 8).

Hence we can generate a sample by simulating (10). This sampling algorithm is called

the Langevin Monte Carlo. In practice, the exact solution of (10) is not necessary since the

truncation errors are adjusted by the Metropolis-Hastings algorithm*5.

Figure 3 compares the Langevin MC with the random walk MC (Xt = Wt). The target

distribution is a skewed normal distribution π(x) = 2φ(x)Φ(x). The equation (10) is approx-

imated by ∆Xt = (1/2)(log π∗)′(Xt)∆t + ∆Wt, where ∆Wt ∼ N(0, ∆t) and ∆t = 0.3.
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Figure3 Comparison of the two methods: Langevin MC (left) and random walk MC (right).

*5 See e.g. C. P. Robert and G. Casella (2004), Monte Carlo Statistical Methods, 2nd ed., Springer.
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5 Exercises

In the following, Wt denotes the standard Brownian motion.

Problem 1. Let Bt be the Brownian bridge defined by (3). Show that Bt has the mean zero

and autocovariance function (4).

Problem 2. Let Z =
∑N

i=1 bi(Wti −Wti−1) for 0 = t0 < t1 < · · · < tN , where bi is a function

of {Ws}s≤ti with E[b2
i ] < ∞. Show that E[Z] = 0 and V [Z] =

∑N
i=1 E[b2

ti
](ti − ti−1).

Problem 3. Show that W 2
t − t is a martingale.

Problem 4. For the Ornstein-Uhlenbeck process (7), show that the conditional density func-

tion of Xt given X0 = x is N(xe−θt, σ2(1 − e−2θt)/2θ). You may use the fact that
∫ t

0
bsdWs

is a Gaussian random variable if bt is deterministic (non-random). Deduce that N(0, σ2/(2θ))

is a stationary distribution.

Problem 5. Use Itô’s formula to show the following identities.

(a)
∫ t

0
W 2

s dWs = W 3
t /3 −

∫ t

0
Wsds.

(b)
∫ t

0
f(Ws)dWs = F (Wt)−(1/2)

∫ t

0
f ′(Ws)ds, where f(x) is a smooth function and F (x) =∫ x

0
f(y)dy is the Riemann integral.

Problem 6. Let f and g be smooth functions and let Yt = f(g(Wt)). Obtain the expression

of dYt in the following two ways, and confirm that the results are the same.

(a) First apply Itô’s formula to Xt = g(Wt). Then apply the formula to Yt = f(Xt).

(b) Apply Itô’s formula to Yt = h(Wt), where h(x) = (f ◦ g)(x) = f(g(x)).

Problem 7 (Multi-dimensional diffusion). Let W1(t), . . . ,Wd(t) be independent standard

Brownian motions. A d-dimensional diffusion process X(t) = (X1(t), . . . , Xd(t)) is defined by

dXi(t) = µi(t,X(t))dt +
d∑

a=1

σia(t, X(t))dWa(t),

where µi and σia are smooth functions. Itô’s formula for Y (t) = f(X(t)) is known to be

dY (t) =
d∑

j=1

∂f

∂xi
dXj(t) +

1
2

d∑
j=1

d∑
k=1

∂2f

∂xj∂xk
dXj(t) · dXk(t),

where the second-order term is interpreted as

(dt)2 = 0, (dt)(dWa(t)) = 0, and dWa(t) · dWb(t) = δabdt
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with Kronecker’s delta δab. Show that the forward equation is

∂p

∂t
= −

∑
i

∂

∂yi
(µip) +

1
2

∑
i

∑
j

∂2

∂yi∂yj

(∑
a

σiaσjap

)
,

in the same way as the proof of Theorem 4.

Problem 8. For a diffusion process (10), confirm that the forward equation (9) is satisfied

by p(t, y|s, x) = π(y) = π∗(y)/Z.

Problem 9. Let π∗(x) and g(x) be positive functions on R. Define a diffusion process Xt by

dXt =
1
2g

(
log

π∗√
g

)′

dt +
1

2
√

g

(
1
√

g

)′

dt +
1
√

g
dWt,

where g = g(Xt) and so on. Let π(x) = π∗(x)/Z, where Z =
∫

π∗(x)dx is the normalizing

constant. Then show that π(x) is a stationary solution of the forward equation. This result

is related to the Riemannian manifold Langevin Monte Carlo*6. Note that (10) is a special

case, g = 1.

*6 M. Girolami and B. Calderhead (2011), Riemann manifold Langevin and Hamitonian Monte Carlo

methods, J. Roy. Statist. Soc., 73 (2), 123–214.
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