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1 Stationary processes

oo

Consider a discrete-time process X = {X,,}52_ . The index set is sometimes restricted to

non-negative integers: {X,, }>2 .

Definition 1 (strong stationarity). A process X is said to be strongly stationary if the joint

distribution of X, ..., X;,+m is the same as that of Xg,..., X, for all n and m.

Example 1 (Markov chain). Let X be a Markov chain with the transition matrix (p;;) and a
stationary distribution (m;). If P(Xo = i) = m;, then X is strongly stationary.

Today we focus on the following weaker version of stationarity. Here the state space is

assumed to be R.

Definition 2 (weak stationarity). A process X is said to be weakly stationary if E[X,]| =
E[Xy] and Cov[X,,, Xy,4m] = Cov[Xp, X,] for all n and m. For a weakly stationary process

X, the autocovariance function is defined by

¢(n) = Cov[Xo, Xy], ne€Z.

The autocorrelation function (ACF) is defined by

o) — Cov[Xo, Xn]  c(n)
) = VX, )

whenever ¢(0) > 0.
It is easy to see that p(0) = 1 and p(—n) = p(n) for all n. Note that the autocorrelation
function is the autocovariance function of X, /+/¢(0).

Ezample 2 (white noise). Let {Z,,} be a sequence of uncorrelated real-valued random variables

with zero means and unit variances. Any process with this property is called a white noise.
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The autocovariance function of a white noise is ¢(n)
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Figurel A sample path (left) and the autocorrelation function (right) of the white noise.

Ezample 3 (autoregressive process). Let {Z,} be a white noise. Define a process {X,,} by

X,=aX, 1+0Z,, néeEw,

where @ € R and o > 0. This process is called an autoregressive process of order 1 (AR(1)).
Suppose |a| < 1. If X,, is weakly stationary (and therefore E[X?2] is bounded), we have

Xy =0(Zn+aZp 1 +a*Zy o+--)
by induction, where the limit on the right hand side is interpreted in L? sense*'. Then the

autocovariance function is c¢(n) = o2a/™ /(1 — a?). See Figure 2. Note that X,, and Z, are

uncorrelated if m < n. This property is called causality. See Section 3 and Problem 1.
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Figure2 A sample path (left) and the autocorrelation function (right)of AR(1) with o = 0.85.

*1 We say that a sequence of random variables {Y;,} converges to a random variable Y in L2 if E[|Y,,—Y|?] —
0 as n — oo.
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2 Spectral distribution
The following theorem is powerful. See Section 4 for a sketch of proof.

Theorem 1. For any autocovariance function ¢, there exists a unique finite measure F' on
(—m, ] such that
™ .
c(n) = / ePME(d)), neZ, i=+—1, (1)
—Tr

and F' is symmetric in the sense that F(A) = F(—A) for any subset of (0,7). If ¢ is an

autocorrelation function (¢(0) = 1), then F' is a probability measure.

If you are not familiar with the notation [ e*"F(d)), just replace it with [ ™" f(\)d\ or

>y € f(A), in accordance with continuity or discreteness of F.

Definition 3 (spectral distribution). The distribution F' satisfying (1) is called the spectral
distribution. If F' has the density function f, then f is called the spectral density function.

Ezample 4. The spectral density of a white noise is f(A) = 1/27. Indeed,

1/ eAd\ = o(n).
2

—Tr

Example 5. Let

X, = Acos(Aon) + Bsin(A\gn), n € Z, (2)

where A and B are uncorrelated random variables with zero mean and unit variance, and
Ao € (0,7). The autocovariance function of X,, is ¢(h) = cos(Aoh), h € Z, and therefore the
spectral distribution is a discrete measure (dx,(dA) + d_x,(dN))/2.

Intuitively speaking, any weakly stationary process is a superposition of (2) for infinitely

many \o’s. This is mathematically justified by spectral processes, but not discussed here*2.

Ezample 6. As we shall see in the following section, the spectral density function of AR(1)
process X,, = aX,_1 + 0Z, is given by

o2 1

T or1—2acosA+ a2

ey

Figure 3 shows the spectral density when o = 0.85.

*2 See e.g. Section 9.4 of PRP.
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Figure3 Spectral representation of AR(1) with o = 0.85. The upper two figures are the
same as Figure 2. The lower two figures are the “Fourier transform” of them.

3 Causal processes

We give a broad class of weakly stationary processes. Let {Z,,} be a white noise. Define a

lag operator L by La,, = a,_1 for any sequence {a,}. A causal process™ {X,} is defined by

where g(L) = > _, gm L™, gm € R. More precisely, X, is the output of a causal system g(L)
when the input is a white noise. We put a technical assumption** that the convergence radius

of a power series g(z) =Y gmz™ is greater than 1.

Theorem 2. The spectral density function of (3) is given by

1
o

ey g(e™)?. (4)

*3 For further details, See e.g. Brockwell and Davis (1991), Time Series: Theory and Methods, Springer.
*4 The assumption implies that the right hand side of (3) is well-defined.

4
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Proof. The autocovariance function of X, is

c(h) = E[XoXn] =Y > " gmgnE[Z - Zn—n]

m

_ % S5 Gon /” Gilh=ntm)x gy

imA
gme
m

Thus the spectral density is (4). O

2

1 (7 ihA
— dA.
2 J_ . ¢

Example 7. The stationary AR(1) process X,, = aX,_1 + 0Z, is rewritten as

X,=0(l-al)™'Z,

if |a| < 1. Therefore its spectral density is

1 o2 1 o

:%ll—ae’ﬂz T 2r1-2acosAta?

2

f)

4 Bochner's theorem

This section may be skipped. We denote the complex conjugate of z € C by Z.

Definition 4 (non-negative definiteness). A complex-valued function p(n), n € Z, is called
non-negative definite if Zle Z§:1 p(n; —nj)w;w; > 0 for any k > 1, ny,...,n; € Z and

wi, ..., wg € C.

Lemma 1. Any autocovariance function is non-negative definite.

Proof. Y. Zj c(ni —nj)wiw; =, Zj E[Xn, Xn,Jwiw; = E[| ), X, wi)?] > 0. O

Lemma 2. If p is non-negative definite, then p(0) > 0, |p(n)| < p(0), and p(—n) = p(n).

Proof. Let k = 1, n1 = 0 and w1 = 1 in the definition of non-negative definiteness. Then
we have p(0) > 0. Let k =2, n1 =0, n2 =n, w1 =1 and wa = a € C. Then we have
(1 + |a|*)p(0) + ap(n) + @p(—n) > 0. Take o = /—1 to obtain Re(p(n)) = Re(p(—n)) and
a =1 to obtain Im(p(n)) = —Im(p(—n)). Let a = —p(n)/|p(n)| to obtain |p(n)| < p(0). O

Lemma 3. Suppose that p is non-negative definite. Let N be a positive integer and py(n) =
(1—|n|/N)+p(n), where a; = max(a,0). Let fy(A) = (27)71 Y, pn(n)e*". Then pn(n) =
JO e fn(A)dA and fx(A) > 0.

Proof. Tt is easy to see that [™_e™" fy(A\)dX\ = (2m) 'S, pn(m) [T "™ d\ = py(n).
We also have fx()\) = (27N) ™! Z;.\szl p(j —k)e*U=PX > 0 by non-negative definiteness. [

Theorem 1 is a corollary of the following theorem.
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Theorem 3 (Bochner*3). A sequence {p(n)} is non-negative definite if and only if there exists

a finite measure F' on (—m, 7| such that

o) = [ e (5)

—
In that case, the distribution F' is unique.

Proof. Tt is easy to show that the equation (5) implies non-negative definiteness:

Z Zp(nz — nj)wwW; = Z Z /7r e“(mfnj)p(d)\)wiw—j _ /7r Z Mgy
7 7 i j -7 - i

The converse is more technical. We only give a sketch here. Let p be a non-negative definite

2

F(d)) > 0.

function and p(0) = 1 without loss of generality. For each positive integer N, define pxy and
fn as Lemma 3. Define Fn(d\) = fn(A)dA. It can be shown that the sequence {Fn}%—; is
tight*® in the space of probability distributions and hence there exists a probability distribution
F such that a subsequence F; converges to I’ in distribution. Then we have the relation (5)
as follows:

™ U

lim e Fy, (d)\) = / e E(dN).

Jj—oo

pln) = lim pu; (n)

Finally, we prove the uniqueness of F'. Suppose (5) holds. Define py and fny as above. It is
sufficient to prove an inversion formula
b
F((a,b)) = Nlim fn(A)dA, (6)

a

whenever F({a}) = F({b}) = 0. By definition of fy and (5), we have

2

N-1 N-1
& n i(u—X\)n 1 i(u—A)n
fN(A):/ 3 (1|N|>e(” » F(du):/ I3 e R,
T p=—(N-1) - n=0
Kn(p—2A)

Integrating both sides from A\ = a to b, we obtain

/ab IN(AN)dX = /_: (/ab Kn(p— A)d)\) F(dp).

The function Ky converges to the “delta function”. More precisely, it is shown that

b .
. |1 ifpe(abd),
Mm KN(“_”\)‘M_{ 0 if u ¢ [a,b].

It is also shown that f; Kn(p—X)dX < [T Kn(u—A)dA =1 for all N. Now the formula (6)
follows from Lebesgue’s dominated convergence theorem. ]

*5 e.g. W. Feller (1971), An Introduction to Probability Theory and its Applications, Vol.2, 2nd ed., Wiley.
*6 For the definition of tightness and its implication, refer to any book on advanced probability theory, e.g.,
J. S. Rosenthal (2006), A first look at rigorous probability theory, 2nd ed., World Scientific.
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5 Exercises
In the following, “stationary” refers to “weakly stationary”.

Problem 1 (Non-causal process). Let {Z,,} be a white noise. Show that even if || > 1, there
exists a stationary process {X,,} such that X,, = aX,,_1 + 0Z,,, where X,,_; and Z,, are not

necessarily uncorrelated*”. [Hint: represent X,,_; in terms of X,, and Z,,.]

Problem 2. Let {Z,} be a white noise. Define a process X = {X,,} by

p
n = ZOéan_j + 07,

j=1
where a; € R and o > 0. Suppose that all the roots of the equation 1 — Z§:1 ajzj = 0 with
respect to z € C are outside the unit circle. This process is called an AR(p) process. Show
that the spectral density function of X is

2

1= >0, a2

) =

Problem 3. Let ¢(n) and d(n) be autocovariance functions.

(i) Show that ¢(n) + d(n) is also an autocovariance function.

(ii) Show that c¢(n)d(n) is also an autocovariance function.
[Hint: Consider processes X,, +Y,, and X,,Y,,, respectively, where X,, and Y,, are independent.|

Problem 4. Let A, B, be independent random variables. Assume that P(A = +1) =
P(B =+1) =1/2, and Q is uniformly distributed on (0, 7). Define a process {X,,} by

X, = Acos(Qn) + Bsin(n).

(i) Show that {X,} is a white noise.
(ii) Show that X_;, Xo, X7 determine the whole process {X,,}°2

-0

Problem 5. Let X,, be a circular stationary process in the sense that there exists N > 1
such that the autocovariance function c¢ satisfies ¢(n) = ¢(n+ N) for all n. Show that a matrix
C={c(j — k)}j-\fk:l is non-negative definite. Use the spectral decomposition of C' to obtain

the identity
N—-1

e27rzmn/N f )

m=0

where f(m) = 12 ( )e~2mmn/N ig non-negative.

*T If we assume a priori that X,,—1 and Z,, are uncorrelated, then there is no stationary solution Xy, .

7
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Problem 6 (Effective sample size). Let {X,,}°2 _ __ be a stationary process with F[X,] = u
and E[X,,X,] = a?p(m—mn), where p is an autocorrelation function. Denote the sample mean

and sample variance of {X,,}_, by

N
X = ;;Xn 6% = NZ(Xn—X)Q.

(i) Show that E[X] =  and V[X] = (o2/N) SNy (1 = [nl/N)p(n).
(ii) Show that E[6?%] = 02 — V[X].
(iii) Assume Y °7 |p(n)| < co. Show that

lim NV[X]=c%f(0), lim E[6?] =02,
N—o0 N—00
where f(0) =377 p(n) is the spectral density at frequency zero.

Remark: the quantity Neg = N/f(0) is called the effective sample size. If Nog is given, the
variance V[X] is estimated by 62/Neg. This strategy is used in error estimate of MCMC*8

*8 e.g. the ‘coda’ package in R language. https://cran.r-project.org/web/packages/coda/coda.pdf



