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Q1� �
Let 0 < p < 1 and q = 1 − p. Define a Markov chain S = {Sn}n≥0 taking values in {0, 1, · · · } by

P (Sn = j | Sn−1 = i) =


p if i ≥ 1 and j = i + 1,
q if i ≥ 1 and j = i − 1,
1 if i = 0 and j = 1,
0 otherwise.

In other words, S is a simple random walk with the reflecting boundary at 0.

(a) Calculate P (S4 = 0 | S0 = 0). (10 marks)

(b) Let 0 < p < 1/2. Find a stationary distribution of the chain. (10 marks)

(c) Let 1/2 < p < 1. Prove that the state 0 is transient. (15 marks)� �
Answer. (a) Possible paths are

(S0, S1, S2, S3, S4) = (0, 1, 2, 1, 0) or (0, 1, 0, 1, 0).

They have probability 1 · p · q · q = pq2 and 1 · q · 1 · q = q2, respectively. Therefore

P (S4 = 0|S0 = 1) = pq2 + q2.

(b) The equation which determines the stationary distribution is

π0 = qπ1, (1)

π1 = π0 + qπ2 and (2)

πi = pπi−1 + qπi+1, i ≥ 2. (3)

The general solution for the recursive equation (3) is

πi = a + b(p/q)i, i ≥ 1,

since the characteristic equation of (3) is λ = p + qλ2 and its solutions are λ = 1 and λ = p/q. Since πi

is a mass function, it should satisfy ∑
i≥0

πi = 1 (4)

and therefore the coefficient a must be 0. Now we obtain πi = b(p/q)i. Then π0 is determined by (1):

π0 = qπ1 = bq(p/q) = bp.

Finally, the coefficient b is determined by (4):∑
i≥0

πi = bp +
∑
i≥1

b(p/q)i = bp +
b(p/q)
1 − p/q

= b
p(1 − p/q + 1/q)

1 − p/q
=

2bpq

q − p
= 1,
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and therefore b = (q − p)/(2pq). The stationary distribution is

π0 =
q − p

2q
and πi =

q − p

2pq
(p/q)i (i ≥ 1).

(c) (Solution 1: counting paths) Let f0(n) = P (S1 > 0, . . . , Sn−1 > 0, Sn = 0|S0 = 0) for n ≥ 1 and

f0(0) = 0. If
∑

n≥0 f0(n) < 1, the chain is transient. It is easy to see that f0(n) = 0 for odd n’s. Consider

f0(2n) for n ≥ 1. Let A2n be the number of paths satisfying S0 = 0, S1 > 0, . . . , S2n−1 > 0, S2n = 0.

This is obtained by reflection principle as follows. The number of paths with S1 = 1 and S2n−1 = 1 is(
2n−2
n−1

)
, and the number of paths with S1 = 1, S2n−1 = 1 and Sk = 0 for some 2 ≤ k ≤ 2n − 2 is

(
2n−2

n

)
by the reflection principle. Therefore

A2n =
(

2n − 2
n − 1

)
−

(
2n − 2

n

)
=

(2n − 2)!
(n − 1)!

− (2n − 2)!
n!(n − 2)!

=
(2n − 2)!
n!(n − 1)!

.

Since each path has the probability pn−1qn, we have

f0(2n) = A2npn−1qn =
(2n − 2)!
n!(n − 1)!

pn−1qn.

Their sum is
∞∑

n=1

f0(2n) =
∞∑

n=1

(2n − 2)!
n!(n − 1)!

pn−1qn

=
∞∑

n=1

(n − 3/2) · · · (1/2)
n!

22n−2pn−1qn

=
∞∑

n=1

(1/2)(−1/2) · · · (−(n − 3/2))
n!

(−1)n−122n−1pn−1qn

=
−1
2p

∞∑
n=1

(1/2)(−1/2) · · · (−(n − 3/2))
n!

(−4pq)n

=
1
2p

{
1 −

√
1 − 4pq

}
=

1
2p

(1 − |1 − 2p|)

=
{

1 if 0 < p ≤ 1/2,
(1 − p)/p if 1/2 < p < 1.

The chain is transient if (and only if) 1/2 < p < 1.

(Solution 2: using absorbing barrier) Fix b ≥ 1 and consider an event

A = A(b) = {S0 < b, . . . , Sn−1 < b, Sn = 0 for some n ≥ 0}.

In other words, the event A denotes that the chain reaches the state 0 before reaching the state b. Let

φj = φj(b) = P (A|S0 = j) for each 0 ≤ j ≤ b. Then we have a recursive equation

φj = pφj+1 + qφj−1 (1 ≤ j ≤ b − 1)

with boundary conditions φb = 0 and φ0 = 1. The unique solution is

φj =
(q/p)j − (q/p)b

1 − (q/p)b
.
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By letting b → ∞, we have
lim

b→∞
φj(b) = (q/p)j

since q/p < 1. Since the event A(b) is increasing in b, we have

P (Sn = 0 for some n ≥ 0|S0 = j) = P

 ∪
b≥1

A(b)

∣∣∣∣∣∣ S0 = j


= lim

b→∞
P (A(b)|S0 = j)

= lim
b→∞

φj(b)

= (q/p)j .

In particular,

P (Sn = 0 for some n ≥ 1|S0 = 0) = P (Sn = 0 for some n ≥ 1|S1 = 1) = q/p < 1.

Note that this result is the same as obtained in Solution 1. Hence S is transient.

(Solution 3: using Theorem 6.4.10 of the book PRP) Consider a system of equations

yi = pyi+1 + qyi−1, i ≥ 1, y0 = 0. (5)

The general solution is
yi = a − a(q/p)i, i ≥ 1,

where a is any real number. In particular, |yj | ≤ 1 for all j ≥ 1 whenever |a| ≤ 1. Hence the chain is

transient by Theorem 6.4.10. Note that the equation (5) is satisfied by yi = φi − 1, where φi = P (Sn =

0 for some n ≥ 0|S0 = i).

(Solution 4: comparison) Let Y = {Yn}∞n=0 be the simple random walk in the usual sense. Let

T = inf{n ≥ 1 | Sn = 0} and U = inf{n ≥ 1 | Yn = 0}.

Then we have P (T = 2n|S0 = 0) ≤ P (U = 2n|Y0 = 0). Indeed, as shown in the following figure, a

specific path {si}2n
i=0 of S has the probability pn−1qn whereas the corresponding two paths {si} and

{−si} of Y have the probability 2pnqn, which is greater than pn−1qn. Since Y is transient, we have

P (T < ∞|S0 = 0) ≤ P (U < ∞|Y0 = 0) < 1. Hence Sn is also transient.

A path {si}2n
i=0 of S. Two paths {si}2n

i=0 and {−si}2n
i=0 of Y .
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Q2� �
Let a, b, c be positive numbers. Define a continuous-time Markov chain {X(t)}t≥0 by the generator

G =

−(a + b) a b
a −(a + c) c
b c −(b + c)

 .

(a) Find a stationary distribution π = (π1, π2, π3) of the chain. (10 marks)

(b) Suppose that a = b = c. Find the transition matrix Pt = (pij(t)), where

pij(t) = P (X(t) = j | X(0) = i).

(15 marks)� �
Answer. (a) Solve the linear equation πG = 0 with π1 + π2 + π3 = 1. The equations are

−(a + b)π1 + aπ2 + bπ3 = 0,

aπ1 − (a + c)π2 + cπ3 = 0,

bπ1 + cπ2 − (b + c)π3 = 0,

π1 + π2 + π3 = 1.

Note that a, b, c are positive. By eliminating π3 from the first two equations, we have

{−(a + b) − (b/c)a}π1 + {a + (a + c)b/c}π2 = 0.

We obtain π1 = π2. Similarly, we have π2 = π3. Therefore π1 = π2 = π3 = 1/3.

(Remark) In general, if the state space is finite and the generator G is symmetric, then the uniform

distribution πi = 1/|S| is a stationary distribution, which may not be unique.

(b) The generator is

G =

−2a a a
a −2a a
a a −2a

 .

The transition matrix Pt is obtained by Pt = exp(tG). The spectral decomposition of G is

G = V ΛV >, V =

1/
√

3 1/
√

2 1/
√

6
1/
√

3 −1/
√

2 1/
√

6
1/
√

3 0 −2
√

6

 , Λ =

0
−3a

−3a

 .

Therefore

Pt = exp(tG)

= V exp(tΛ)V >

= V

1
e−3at

e−3at

 V >

=

(1/3) + (2/3)e−3at (1/3) − (1/3)e−3at (1/3) − (1/3)e−3at

(1/3) − (1/3)e−3at (1/3) + (2/3)e−3at (1/3) − (1/3)e−3at

(1/3) − (1/3)e−3at (1/3) − (1/3)e−3at (1/3) + (2/3)e−3at

 .
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Q3� �
Throw a dice once and let Z1 be the number that turned up. Then throw the dice Z1 times and let

Z2 be the sum of the numbers that turned up. Similarly, after Zn−1 is defined, throw the dice Zn−1

times and let Zn be the sum of the numbers that turned up. Find the expected value of Zn for each

n.

(15 marks)� �
Answer. (Solution 1) Let {Xn

i }i≥1,n≥1 be independent random variables with the probability P (Xn
1 =

j) = 1/6 for each j = 1, . . . , 6. The expected value of Xn
i is E[Xn

i ] = (1 + · · · + 6)/6 = 7/2. Then Zn is

written as
Zn = Xn

1 + · · · + Xn
Zn−1

.

The expected value is

E[Zn] = E[Xn
1 + · · · + Xn

Zn−1
]

= E[E[Xn
1 + · · · + Xn

Zn−1
|Zn−1]]

= E[(7/2)Zn−1]

= (7/2)E[Zn−1].

Since Z0 = 1, we have E[Zn] = (7/2)n.

(Solution 2) The process Zn is a branching process with the family size distribution f(k) = 1/6 for

k = 1, . . . , 6. The generating function Gn(s) of Zn satisfies Gn(s) = Gn−1(G(s)) = G(Gn−1(s)). The

expected value of Zn is G′
n(1). In general, we have

G′
n(1) = G′(Gn−1(1))G′

n−1(1)

= G′(1)G′
n−1(1)

= (G′(1))n

(see Lemma 5.4.2 of PRP). Since G′(1) = 7/2, we have G′
n(1) = (7/2)n.
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Q4� �
There are n seats at a table. At each time, a person chooses an empty seat at random in such

a way that both seats next to it are also empty. This process continues until there are no seat

available. Then let Xn be the number of the occupied seats. For example, the following figure shows

an outcome when n = 8.

8 available 5 available 3 available no available

Xn = 3.

(a) Find the expected value of X6. (10 marks)

(b) Find the expected value of Xn for every n. (15 marks)� �
Answer. (a) If n = 6, then possible outcomes are (i) X6 = 3 with probability 2/3, or (ii) X6 = 2 with

probability 1/3 (see the following figure). Therefore the expected value of X6 is

E[X6] = 3 · 2
3

+ 2 · 1
3

=
8
3
.

(i) (ii)

(b) After a seat is selected, there remain n−3 seats available in line. Let Ym be the number of eventually

occupied seats out of the m seats in line. Then we have E[Xn] = 1+E[Yn−3]. It is sufficient to calculate

the expected value µm = E[Ym]. By conditioning the first selected seat in the m seats, we have the

following recursive formula:

µm =
1
m

m∑
j=1

(1 + µj−2 + µm−j−1), m ≥ 1,

where µ−1 = µ0 = 0. See the following figure.

m

jj − 2 m − j − 1
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It is further rewritten as

mµm = m + 2
m∑

j=1

µj−2, m ≥ 1.

Denote the generating function of µm by G(s) =
∑∞

m=0 µmsm. Multiplying sm to the above equation

and summing up, we have

∞∑
m=1

mµmsm =
∞∑

m=1

m + 2
m∑

j=1

µj−2

 sm.

Since G′(s) =
∑∞

m=1 mµmsm−1, we obtain

sG′(s) =
∞∑

m=1

msm + 2
∞∑

m=3

m−2∑
k=1

µksm

= s

(
1

1 − s

)′

+ 2
∞∑

k=1

µk

∞∑
m=k+2

sm

=
s

(1 − s)2
+ 2

∞∑
k=1

µk
sk+2

1 − s

=
s

(1 − s)2
+

2s2

1 − s
G(s).

We obtain the following differential equation

G′(s) =
1

(1 − s)2
+

2s

1 − s
G(s)

=
1

(1 − s)2
+

(
−2 +

2
1 − s

)
G(s)

The equation is equivalent to

G′(s) +
(

2 − 2
1 − s

)
G(s) =

1
(1 − s)2

.

Since
∫

(2 − 2
1−s )ds = 2s + 2 log(1 − s) = log((1 − s)2e2s), we have(

(1 − s)2e2sG(s)
)′

= e2s.

The general solution is

G(s) =
1 + Ce−2s

2(1 − s)2
,

where C is an arbitrary constant. Since G(0) = 0, the constant is C = −1. Expand G(s) as

G(s) =
1 − e−2s

2(1 − s)2

=
1
2

∞∑
i=0

(i + 1)si
∞∑

j=1

(−1)j−1(2s)j

j!

=
1
2

∞∑
m=1

 m∑
j=1

(m − j + 1)(−1)j−12j

j!

 sm
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Therefore

µm =
1
2

m∑
j=1

(m − j + 1)(−1)j−12j

j!
.

Finally, the expected value of Xn is

E[Xn] = 1 + E[Yn−3] = 1 +
1
2

n−3∑
j=1

(n − 2 − j)(−1)j−12j

j!
.

(Remark) Compare the obtained formula with direct calculation. For example,

E[X6] = 1 +
1
2

(
3 · 2
1

− 2 · 4
2

+
1 · 8
6

)
=

8
3

is consistent with the result of (a). The following table shows E[Xn] for 1 ≤ n ≤ 10 according to the

formula.

n 1 2 3 4 5 6 7 8 9 10

E[Xn] 1 1 1 2 2
8
3

3
52
15

35
9

454
105
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