ON A STATISTICALLY EQUIAFFINE MODEL WHICH ISN'T CONJUGATE SYMMETRIC

MASARU TANAKA

DEPARTMENT OF INFORMATION AND COMPUTER SCIENCES SAITAMA UNIVERSITY

The Jeffreys prior, which plays an important role in statistical inference, is generalized to the α -parallel prior by J. Takeuchi and S. Amari[1] from the information geometrical point of view. The α -parallel prior coinsides with the Jeffreys prior if $\alpha = 0$. However the α -parallel prior doesn't always exist for the general value of α ($\alpha \neq 0$). J. Takeuchi and S. Amari give the sufficient condition for the existence of the α -parallel prior such that, if a statistical model is conjugate symmetric, the model is staistically equiaffine. Then they leave the open problem such that whether there exist a statistically equiaffine natural model which is not conjugate symmetric or not. Here we give a solution for their open problem explicitly by considering the q-normal distribution, that belongs to a non-exponential family. The q-normal distribution can smoothly connect the various probability density functions. According as the parameter q changes from $-\infty$ to 3, the q-normal distribution changes from the uniform distribution with a compact support to the uniform distribution with non-compact support, which height is completely 0, via Cauchy distribution, t-distribution and the normal distribution etc. Explict calculations show that the q-normal distribution is not conjugate symmetric, that is to say, α -Riemann tensor isn't antisymmetric for its two of four subscript indices, but the q-normal distribution is statistically equiaffine, that means α -Ricci tensor is symmetric for its two subscript indices. Therefore the answer is that there exists such a model.

References

 J. Takeuchi and S. Amari, α-Parallel Prior and Its Properties, *IEEE transactions on Inform.* Theory, Vol. 51, No. 3, pp. 1011-1023, March 2005.