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The Self-Organizing Map (SOM) is generally known as a method for mapping
high dimensional data vectors to a lower dimensional space with topology preser-
vation. SOM approaches have almost exclusively used the Euclidean metric for
connecting neighboring cells in the Kohonen layer. Relaxing this constraint is
fairly straight forward. It opens up questions about the geometric structure of the
probability density models of the training set (TS) that canonically corresponds
to the curved Kohonen metric. The idea to consider a curved Kohonen layer was
inspired by the prominent cortical fold in the human primary visual cortex (V1), i.
e., the calcarine sulcus. Does the shape of V1 influence the cortical magnification
factor (CMF) and receptive field size? To answer this questions, we investigated
approximations of the retino-cortical map. Approximations can be derived from
coefficients of the Jacobian matrix J = ( ∂xi

∂φj ). Experiments often characterize only

J11 = ( ∂x1

∂φ1 ) along a limited number of meridians (φ2), e.g. alongthe vertical and
horizontal meridian, called linear CMF. Extra constraints must be applied to de-
termine the map. Usual constrains are isotropy and, alternatively, meridonally
symmetry. Given these, a flat approximation of the map can be constructed. The
flatness is, however, a further convenient assumption rather than a result. We let
V1 assume its typical curved shape and preserve certain metrical measures from
the flat approximation of the map, such as surface area or isometry along certain
coordinate lines. Depending on the preserved measure, we can build a curved Ko-
honen layer. Then, in contrast to the standard application of the SOM, we generate
a canonical TS (CTS) for this Kohonen layer by choosing a uniform cortical den-
sity function on the curved surface and transform it into the retinal domain (φi).
This procedure is consistent with the idea that CMF is proportional to the retinal
ganglion cell density. The curved Kohonen layer is trained with its own CTS, and
also with a CTS of a flat V1.

As expected, the curved SOM (CSOM) maps its CTS such that in each Voronoi
cell of a Kohonen node lies an equal number of data points. For example, if the
cortical representation of the horizon is extended larger than other meridian repre-
sentations due to the process of folding, a central band of smaller receptive fields
is observed. This band is a natural consequence of increased retinal CTS density
(also known as a visual streak). But even with a meridonally symmetric TS, a
common CTS of a flat V1, we find a central band of smaller receptive fields in a
curved Kohonen layer. In this case, the CMF is not proportional to TS density
throughout the visual field, i. e., the Voronoi cells in the central band consist of
less data points.

Our results do not yet contribute to but seek answers from Information Geom-
etry: What is the geometric structure of the CTS? In a simple case, the flat CTS
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can be chosen meridonally symmetric. Then the joint distribution (φ1, φ2) can
be determined from the marginal distributions, in other words the corresponding
random variables are independent. On the contrary, a CSOM usually introduces
a strong dependency by the visual streak in the CTS. If the geometric structure
of the statistical models relates to the geometric structure of the Kohonen layer, a
CSOM might dynamically adapt its curvature during the learning phase.


