A QUANTUM/COMPLEX EXTENSION OF INFORMATION GEOMETRY

HIROSHI NAGAOKA

GRADUATE SCHOOL OF INFORMATION SYSTEMS, THE UNIVERSITY OF ELECTRO-COMMUNICATIONS, 1-5-1 CHOFUGAOKA, CHOFU, TOKYO 182-8585, JAPAN. *E-mail address:* nagaoka@is.uec.ac.jp

E-mail adaress: nagaokawis.uec.ac.jp

Let $\mathcal{H} \cong \mathbb{C}^d$ be a Hilbert space. Introducing the equivalence relation \sim on $\mathcal{H} \setminus \{0\}$ by $\xi_1 \sim \xi_2 \iff \exists c \in \mathbb{C}, \ \xi_1 = c \, \xi_2$, the complex projective space is defined as the quotient space: $\mathbb{P}(\mathcal{H}) = (\mathcal{H} \setminus \{0\}) / \sim$, which is a (d-1)-dimensional complex manifold. We can identify it with the set of pure states in quantum mechanics: $\mathbb{P}(\mathcal{H}) = \{|\xi\rangle\langle\xi| \mid \xi \in \mathcal{H}, \|\xi\| = 1\}.$

The inner product on \mathcal{H} naturally induces a Riemannian metric g on \mathcal{H} , which is called the Fubini-Study metric. Here we redefine g by multiplying the standard definition by 4. From a viewpoint of quantum estimation theory, g can be regarded as an analogue of Fisher information metric as follows. Let $[\theta^i]$ be a local coordinate system on $\mathbb{P}(\mathcal{H})$, whereby an element of $\mathbb{P}(\mathcal{H})$ is parametrized as ρ_{θ} . The components of g are then represented as $g_{ij} = \operatorname{Re} \operatorname{Tr} [\rho_{\theta} L_{\theta,i} L_{\theta,j}]$, where $L_{\theta,i}$ is a hermitian operator on \mathcal{H} satisfying $\frac{\partial}{\partial \theta^i} \rho_{\theta} = \frac{1}{2} (\rho_{\theta} L_{\theta,i} + L_{\theta,i} \rho_{\theta})$. The operators $\{L_{\theta,i}\}$ and the matrix $[g_{ij}]$ are called symmetric logarithmic derivatives (SLDs) and the SLD Fisher information matrix, respectively, and play important roles in quantum estimation theory.

From the fact that $\mathbb{P}(\mathcal{H})$ is a complex manifold, a (1, 1)-tensor field J satisfying $J^2 = -1$ is canonically defined, and a skew-symmetric bilinear form (differential 2-form) ω is defined by $\omega(u, v) = g(u, Jv)$. It is well known that g is a Kähler metric in the sense that $d\omega = 0$.

Suppose that we are given a point $\rho_0 \in \mathbb{P}(\mathcal{H})$ and hermitian operators $\{F_1, \ldots, F_n\}$ on \mathcal{H} such that $F_iF_j = F_jF_i$ ($\forall i, j$) and that $\{\rho_0, F_1\rho_0, \ldots, F_n\rho_0\}$ are linearly independent (which implies $n \leq d-1$). For $z = (z^1, \ldots, z^n) \in \mathbb{C}^n$ with $z^i = \theta^i + \sqrt{-1}y^i$ (θ^i, y^i) : real), let

$$\rho_z := \exp\left[\frac{1}{2}\left(\sum_i z^i F_i - \psi(\theta)\right)\right] \rho_0 \exp\left[\frac{1}{2}\left(\sum_i \bar{z^i} F_i - \psi(\theta)\right)\right],$$

where $\overline{z^i} = \theta^i - \sqrt{-1}y^i$. Properly choosing a neighborhood V of \mathbb{R}^n in \mathbb{C}^n so that $V \ni z \mapsto \rho_z$ is injective, the set $M := \{\rho_z \mid z \in V\}$ becomes a complex submanifold of $\mathbb{P}(\mathcal{H})$ with holomorphic coordinates $[z^i]$, on which the Kähler structure (J, g, ω) is inherited from $\mathbb{P}(\mathcal{H})$. On the other hand, if the coordinates are restricted to real numbers so that $z^i = \theta^i$, we obtain $N := \{\rho_\theta \mid \theta \in V \cap \mathbb{R}^n\}$, which is in the form of quasi-classical exponential family and is dually flat with respect to $(g, \nabla^{(e)}, \nabla^{(m)})$, where g is the Fubini-Study (= SLD Fisher) metric on $N, \nabla^{(e)}$ and $\nabla^{(m)}$ are flat affine connections with affine coordinates $[\theta^i]$ and $[\eta_i] := [\operatorname{tr}(\rho_\theta F_i)]$. The dually flat structure and the Kähler structure are closely related. Remarkable manifestations are: $\omega = \sum_i d\eta_i \wedge dy^i, \nabla^{(e)} \circ J = J \circ \nabla^{(m)}$ and $\nabla^{(e)}\omega = \nabla^{(m)}\omega = 0$, where the e, m-connections are properly extended to M. In addition, $4\psi(\theta)$ gives a Kähler potential of M. In my talk at the symposium, I will explain some details of these structures as well as their implications to quantum estimation theory and related subjects.