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I review some recent developments in estimation theory for a smooth parametric
family {Γθ ; θ = (θ1, ..., θd) ∈ Θ} of quantum channels (= trace preserving com-
pletely positive maps) acting on the set S(H) of density operators on a Hilbert space
H [1]. In particular, I will focus on the extension (id ⊗ Γθ)⊗n : S((H ⊗H)⊗n) →
S((H ⊗ H)⊗n), where n is an arbitrary positive integer, and will clarify the role
of quantum entanglement and the degree n of extension, putting emphasis on an
active interplay between noncommutative statistics [2] and information geometry
[3].

In view of the quantum Cramér-Rao type estimation theory, there are at least
two classes of quantum channels that exhibit essentially different asymptotic be-
haviors: the minimum estimation error is of O (1/n) for generalized Pauli channels
[4] as is usually the case in classical statistics, whereas it is of O

(
1/n2

)
for SU(d)

channels [5] [6]. The underlying geometrical mechanism behind these behaviors is
that the degree α of entanglement controls the “shape” of the manifold {Γθ ; θ ∈ Θ}
embedded in the state space S((H⊗H)⊗n), while the degree n of extension controls
its “radius.” It is an open question whether there are classes of quantum channels
that exhibit different asymptotic rates O (1/ns) with s 6= 1, 2. Nevertheless, the
present study demonstrates the usefulness of differential geometrical methods in
quantum channel estimation theory.
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